18 resultados para nuclear receptor

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPARbeta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRalpha and RXRbeta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPAR beta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXR alpha, and RXR beta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. (C) 2007 by The American Society of Hematology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A survey against the draft genome sequence and the cDNA/EST database of Ciona intestinalis identified a number of genes encoding transcription factors regulating a variety of processes including development. In the present study, we describe almost complete sets of genes for Fox, ETS-domain transcription factors, nuclear receptors, and NFkappaB as well as other factors regulating NFkappaB activity, with their phylogenetic nature. Vertebrate Fox transcription factors are currently delineated into 17 subfamilies: FoxA to FoxQ. The present survey yielded 29 genes of this family in the Ciona genome, 24 of which were Ciona orthologues of known Fox genes. In addition, we found 15 ETS aenes, 17 nuclear receptor genes, and several NFkappaB signaling pathway genes in the Ciona genome. The number of Ciona genes in each family is much smaller than that of vertebrates, which represents a simplified feature of the ascidian genome. For example, humans have two NFkappaB genes, three Rel genes, and five NFAT genes, while Ciona has one gene for each family. The Ciona genome also contains smaller numbers of genes for the NFkappaB regulatory system, i.e. after the split of ascidians/vertebrates, vertebrates evolved a more complex NFkappaB system. The present results therefore provide molecular information for the investigation of complex developmental processes, and an insight into chordate evolution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Both the estrogen receptor (ER) and thyroid hormone receptor (TR) are members of the nuclear receptor superfamily. Two isoforms of the ER, alpha and beta, exist. The TRalpha and beta isoforms are products of two distinct genes that are further differentially spliced to give TRalpha1 and alpha2, TRbeta1 and beta2. The TRs have been shown to interfere with ER-mediated transcription from both the consensus estrogen response element (ERE) and the rat preproenkephalin (PPE) promoter, possibly by competing with ER binding to the ERE or by squelching coactivators essential for ER-mediated transcription. The rat oxytocin receptor (OTR) gene is thought to be involved in several facets of reproductive and affiliative behaviors. 17beta-Estradiol-bound ERs upregulate the OTR gene in the ventromedial hypothalamus, a region critical for the induction of lordosis behavior in several species. We investigated the effects of the ligand-binding TR isoforms on the ER-mediated transcription from a physiological promoter of a behaviorally relevant gene such as the OTR. Only ERalpha could induce the OTR gene in two cell lines tested, the CV-1 and the SK-N-BE2C neuroblastoma cell lines. ERbeta was incapable of inducing the gene in either cell line. ERalpha is therefore not equivalent to ERbeta on this physiological promoter. Indeed, in the neural cell line, ERbeta can inhibit ERalpha-mediated induction from the OTR promoter. While the TRalpha1 isoform inhibited ERalpha-mediated induction in the neural cell line, the TRbeta1 isoform stimulated induction, thus demonstrating isoform specificity in the interaction. The use of a DNA-binding mutant, the TR P box mutant, showed that inhibition of ERalpha-mediated induction of the rat OTR gene promoter by the TRalpha1 isoform does not require DNA-binding ability. SRC-1 overexpression relieved TRalpha1-mediated inhibition in both cell lines, suggesting that squelching for coactivators is an important molecular mechanism in TRalpha-mediated inhibition. Such interactions between TR and ER isoforms on the rat OTR promoter provide a mechanism to achieve neuroendocrine integration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crosstalk between nuclear receptors is important for conversion of external and internal stimuli to a physiologically meaningful response by cells. Previous studies from this laboratory have demonstrated crosstalk between the estrogen (ER) and thyroid hormone receptors (TR) on two estrogen responsive physiological promoters, the preproenkephalin and oxytocin receptor gene promoter. Since ERa and ERb are isoforms possessing overlapping and distinct transactivation properties, we hypothesized that the interaction of ERa and b with the various TR isoforms would not be equivalent. To explore this hypothesis, the consensus estrogen response element (ERE)derived from the Xenopus vitellogenin gene is used to investigate the differences in interaction between ERa and b isoforms and the different TR isoforms in fibroblast cells. Both the ER isoforms transactivate from the consensus ERE, though ERa transactivates to a greater extent than ERb. Although neither of the TRb isoforms have an effect on ERa transactivation from the consensus ERE, the liganded TRa1 inhibits the ERa transactivation from the consensus ERE. In contrast, the liganded TRa1 facilitates ERb-mediated transactivation. The crosstalk between the TRb isoforms with the ERa isoform, on the consensus ERE, is different from that with the ERb isoform. The use of a TRa1 mutant, which is unable to bind DNA, abolishes the ability of the TRa1 isoform to interact with either of the ER isoforms. These differences in nuclear receptor crosstalk reveal an important functional difference between isoforms, which provides a novel mechanism for neuroendocrine integration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nuclear receptors are ligand-activated transcription factors, which have the potential to integrate internal metabolic events in an organism, with consequences for control of behaviour. Previous studies from this laboratory have shown that thyroid hormone receptor (TR) isoforms can inhibit oestrogen receptor (ER)alpha-mediated induction of preproenkephalin (PPE) gene expression in the hypothalamus. Also, thyroid hormone administration inhibits lordosis, a behaviour facilitated by PPE expression. We have examined the effect of multiple ligand-binding TR isoforms on the ER-mediated induction of the PPE gene in transient transfection assays in CV-1 cells. On a natural PPE gene promoter fragment containing two putative oestrogen response elements (EREs), both ER alpha and beta isoforms mediate a four to five-fold induction by oestrogen. Cotransfection of TR alpha 1 along with ER alpha inhibited the ER alpha transactivation of PPE by approximately 50%. However, cotransfection with either TR beta 1 or TR beta 2 expression plasmids produced no effect on the ER alpha or ER beta mediated induction of PPE. Therefore, under these experimental conditions, interactions with a single ER isoform are specific to an individual TR isoform. Transfection with a TR alpha 1 DNA-binding mutant could also inhibit ER alpha transactivation, suggesting that competition for binding on the ERE may not be the exclusive mechanism for inhibition. Data with the coactivator, SRC-1, suggested that coactivator squelching may participate in the inhibition. In dramatic contrast, when ER beta is cotransfected, TR alpha 1 stimulated ER beta-mediated transactivation of PPE by approximately eight-fold over control levels. This is the first study revealing specific interactions among nuclear receptor isoforms on a neuroendocrine promoter. These data also suggest that the combinatorics of ER and TR isoforms allow multiple forms of flexible gene regulations in the service of neuroendocrine integration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oestrogens are critical for the display of lordosis behaviour and, in recent years, have also been shown to be involved in synaptic plasticity. In the brain, the regulation of ionotropic glutamate receptors has consequences for excitatory neurotransmission. Oestrogen regulation of the N-methyl-d-aspartate receptor subunit 2D (NR2D) has generated considerable interest as a possible molecular mechanism by which synaptic plasticity can be modulated. Since more than one isoform of the oestrogen receptor (ER) exists in mammals, it is possible that oestrogen regulation via the ERalpha and ERbeta isoforms on the NR2D oestrogen response element (ERE) is not equivalent. In the kidney fibroblast (CV1) cell line, we show that in response to 17beta-oestradiol, only ERalpha, not ERbeta, could upregulate transcription from the ERE which is in the 3' untranslated region of the NR2D gene. When this ERE is in the 5' position, neither ERalpha nor ERbeta showed transactivation capacity. Thyroid hormone receptor (TR) modulation of ER mediated induction has been shown for other ER target genes, such as the preproenkephalin and oxytocin receptor genes. Since the various TR isoforms exhibit distinct roles, we hypothesized that TR modulation of ER induction may also be isoform specific. This is indeed the case. The TRalpha1 isoform stimulated ERalpha mediated induction from the 3'-ERE whereas the TRbeta1 isoform inhibited this induction. This study shows that isoforms of both the ER and TR have different transactivation properties. Such flexible regulation and crosstalk by nuclear receptor isoforms leads to different transcriptional outcomes and the combinatorial logic may aid neuroendocrine integration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid hormones (T) and estrogens (E) are nuclear receptor ligands with at least two molecular mechanisms of action: (i) relatively slow genomic effects, such as the regulation of transcription by cognate T receptors (TR) and E receptors (ER); and (ii) relatively rapid nongenomic effects, such as kinase activation and calcium release initiated at the membrane by putative membrane receptors. Genomic and nongenomic effects were thought to be disparate and independent. However, in a previous study using a two-pulse paradigm in neuroblastoma cells, we showed that E acting at the membrane could potentiate transcription from an E-driven reporter gene in the nucleus. Because both T and E can have important effects on mood and cognition, it is possible that the two hormones can act synergistically. In this study, we demonstrate that early actions of T via TRalpha1 and TRbeta1 can potentiate E-mediated transcription (genomic effects) from a consensus E response element (ERE)-driven reporter gene in transiently transfected neuroblastoma cells. Such potentiation was reduced by inhibition of mitogen-activated protein kinase. Using phosphomutants of ERalpha, we also show that probable mitogen-activated protein kinase phosphorylation sites on the ERalpha, the serines at position 167 and 118, are important in TRbeta1-mediated potentiation of ERalpha-induced transactivation. We suggest that crosstalk between T and E includes potential interactions through both nuclear and membrane-initiated molecular mechanisms of hormone signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estrogens and thyroid hormones are regulators of important diverse physiological processes such as reproduction, thermogenesis, neural development, neural differentiation and cardiovascular functions. Both are ligands for receptors in the nuclear receptor superfamily, which act as ligand-dependent transcription factors, regulating transcription. However, estrogens and thyroid hormones also rapidly (within minutes or seconds) activate kinase cascades and calcium increases, presumably initiated at the cell membrane. We discuss the relevance of both modes of hormone action, including the membrane estrogen receptor, to physiology, with particular reference to lordosis behavior. We first showed that estrogen restricted to the membrane can, in fact, lead to subsequent increases in transcription from a consensus estrogen response element-based reporter in the neuroblastoma cell line, SK-N-BE(2)C. Using a novel hormonal paradigm, we also showed that the activation of protein kinase A, protein kinase C, mitogen activated protein kinase and increases in calcium were important in the ability of the membrane-limited estrogen to potentiate transcription. We discuss the source of calcium important in transcriptional potentiation. Since estrogens and thyroid hormones have common effects on neuroprotection, cognition and mood, we also hypothesized that crosstalk could occur between the rapid actions of thyroid hormones and the genomic actions of estrogens. In neural cells, we showed that triiodothyronine acting rapidly via MAPK can increase transcription by the nuclear estrogen receptor ERa from a consensus estrogen response element, possibly by the phosphorylation of the ERa. Novel mechanisms that link signals initiated by hormones from the membrane to the nucleus are physiologically relevant and can achieve neuroendocrine integration

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hormonal ligands for the nuclear receptor superfamily have at least two interacting mechanisms of action: 1) classical transcriptional regulation of target genes (genomic mechanisms); and 2) nongenomic actions that are initiated at the cell membrane, which could impact transcription. Although transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. Historically, this has led to a considerable divergence of thought in the molecular endocrine field. We have attempted to uncover principles of hormone action that are relevant to membrane-initiated actions of estrogens. There is evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium. Membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription. These signaling cascades may occur in parallel or in series but subsequently converge at the level of modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription. The idea of synergistic coupling between membrane-initiated and genomic actions of hormones fundamentally revises the paradigms of cell signaling in neuroendocrinology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ligands for the nuclear receptor superfamily have at least two mechanisms of action: (a) classical transcriptional regulation of target genes (genomic mechanisms); and (b) non-genomic actions, which are initiated at the cell membrane, which could also impact transcription. Though transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. This has led to considerable debate over the physiological relevance of membrane-initiated actions of hormones versus genomic actions of hormones, with genomic actions predominating in the endocrine field. There is good evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium and that these are linked to physiologically relevant scenarios in the brain. We show evidence in this review, that membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription in both the central nervous system and in non-neuronal cell lines. We present a theoretical scenario which can be used to understand this phenomenon. These signaling cascades may occur in parallel or in series but subsequently, converge at the modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other non-cognate hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription, though the relevance of this is less clear. The idea that coupling between membrane-initiated and genomic actions of hormones is a novel idea in neuroendocrinology and provides us with a unified view of hormone action in the central nervous system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The estrogen receptor and glucocorticoid receptor are members of the nuclear receptor superfamily that can signal using both non-genomic and genomic transcriptional modes. Though genomic modes of signaling have been well characterized and several behaviors attributed to this signaling mechanism, the physiological significance of non-genomic modes of signaling has not been well understood. This has partly been due to the controversy regarding the identity of the membrane ER (mER) or membrane GR (mGR) that may mediate rapid, non-genomic signaling and the downstream signaling cascades that may result as a consequence of steroid ligands binding the mER or the mGR. Both estrogens and glucocorticoids exert a number of actions on the hypothalamus, including feedback. This review focuses on the various candidates for the mER or mGR in the hypothalamus and the contribution of non-genomic signaling to classical hypothalamically driven behaviors and changes in neuronal morphology. It also attempts to categorize some of the possible functions of non-genomic signaling at both the cellular level and at the organismal level that are relevant for behavior, including some behaviors that are regulated by both estrogens and glucocorticoids in a potentially synergistic manner. Lastly, it attempts to show that steroid signaling via non-genomic modes may provide the organism with rapid behavioral responses to stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K) – Akt signalling pathways retains FoxO3a in the cytoplasm thereby inhibiting the transcriptional activation of death promoting genes. We hypothesised that phenolic antioxidants such as tert-Butylhydroquinone (tBHQ), which is known to stimulate PI3K-Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localisation of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and upregulated Fas ligand expression. In contrast the phenolic antioxidant tBHQ caused retention of FoxO3a in the cytosol coincident with enhanced PI3K- dependent phosphorylation of FoxO3a. tBHQ-induced nuclear exclusion of FoxO3a was associated with reduced FoxO-mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA-induced nuclear translocation of FoxO3a prevented NMDA-induced upregulation of FoxO-mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA-induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress-induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. METHODS: We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. KEY RESULTS: The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to approximately 50% of all neurons and to >80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. CONCLUSIONS & INFERENCES: G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.