20 resultados para no duplication

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants. Results: Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes), were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots. Conclusion: Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We and others have described the neurodegenerative disorder caused by G51D SNCA mutation which shares characteristics of Parkinson’s disease (PD) and multiple system atrophy (MSA). The objective of this investigation was to extend the description of the clinical and neuropathological hallmarks of G51D mutant SNCA-associated disease by the study of two additional cases from a further G51D SNCA kindred and to compare the features of this group with a SNCA duplication case and a H50Q SNCA mutation case. Results: All three G51D patients were clinically characterised by parkinsonism, dementia, visual hallucinations, autonomic dysfunction and pyramidal signs with variable age at disease onset and levodopa response. The H50Q SNCA mutation case had a clinical picture that mimicked late-onset idiopathic PD with a good and sustained levodopa response. The SNCA duplication case presented with a clinical phenotype of frontotemporal dementia with marked behavioural changes, pyramidal signs, postural hypotension and transiently levodopa responsive parkinsonism. Detailed post-mortem neuropathological analysis was performed in all cases. All three G51D cases had abundant α-synuclein pathology with characteristics of both PD and MSA. These included widespread cortical and subcortical neuronal α-synuclein inclusions together with small numbers of inclusions resembling glial cytoplasmic inclusions (GCIs) in oligodendrocytes. In contrast the H50Q and SNCA duplication cases, had α-synuclein pathology resembling idiopathic PD without GCIs. Phosphorylated α-synuclein was present in all inclusions types in G51D cases but was more restricted in SNCA duplication and H50Q mutation. Inclusions were also immunoreactive for the 5G4 antibody indicating their highly aggregated and likely fibrillar state. Conclusions: Our characterisation of the clinical and neuropathological features of the present small series of G51D SNCA mutation cases should aid the recognition of this clinico-pathological entity. The neuropathological features of these cases consistently share characteristics of PD and MSA and are distinct from PD patients carrying the H50Q or SNCA duplication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are over 700 species of fig trees in the tropics and several thousand species of fig wasps are associated with their syconia (inflorescences). These wasps comprise a monophyletic family of fig pollinators and several diverse lineages of non-pollinating wasps. The pollinator larvae gall fig flowers, while larvae of non-pollinating species either initiate their own galls or parasitise the galls of other wasps. A single fig species has 1-4 pollinator species and also hosts up to 30 non-pollinating wasp species. Most wasps show a high degree of host plant specificity and are known from only a single fig species. However, in some cases wasps may be shared across closely related fig species. There is impressive morphological coevolution between figs and fig wasps and this, combined with a high degree of partner specificity, led to the expectation that figs and pollinators have cospeciated extensively. Comparison of deep phylogenies supports long-term codivergence of figs and pollinators, but also suggests that some host shifts have occurred. Phylogenies of more closely related species do not match perfectly and may even be incongruent, suggesting significant roles for processes other than strict cospeciation. Combined with recent evidence on host specificity patterns, this suggests that pollinator wasps may often speciate by host shifts between closely related figs, or by duplication (the wasp speciates but the fig doesn't). The frequencies and biological details of these different modes of speciation invite further study. Far less is known about speciation in non-pollinating fig wasps. Some lineages have probably coevolved with figs and pollinators for most of the evolutionary history of the symbiosis, while others appear to be more recent colonisers. Many species appear to be highly host plant specific, but those that lay eggs through the fig wall without entering the syconium (the majority of species) may be subject to fewer constraints on host-shifting than pollinators. There is evidence for substantial host shifting in at least one gens, but also evidence for ecological speciation on the same host plant by niche shifts in other cases. Finally, recent work has begun to address the issue of “community phylogeny” and provided evidence for long-term co-divergence of multiple pollinating and non-pollinating wasp lineages with their host figs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proliferation of designated areas following the implementation of Natura 2000 in Greece has initiated changes in the protected area design and conservation policy making aiming at delivering action for biodiversity and integrative planning on a wider landscape. Following the sustainability concept, an integrative approach cannot realistically take place simply by extending the protected area and designations. The paper addresses public involvement and inter-sectoral coordination as major procedural elements of integrative management and evaluates the nature and strength of their negative or positive influences on the fulfillment of an integrative vision of nature conservation. A review of the history of protected areas and administration developments in Greece provide useful input in the research. The analysis has shown that the selected network of Natura 2000 sites has been superimposed upon the existing system and resulted in duplication of administrative effort and related legislation. As a result the overall picture of protected areas in the country appears complex, confusing and fragmented. Major failures to integrated conservation perspective can be traced to structural causes rooted in politico-economic power structures of mainstream policy and in a rather limited political commitment to conservation. It is concluded that greater realisation. of integrated conservation in Greece necessitates policy reforms related mainly to sectoral legal frameworks to promote environmentalism as well as an increased effort by the managing authorities to facilitate a broader framework of public dialogue and give local communities incentives to sustainably benefit from protected areas. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. Here we characterize all four gene families in the dogfish Seyliorhinus canicula, a member of the cartilaginous fish lineage that diverged before the radiation of osteichthyan vertebrates. We identify two FoxC genes, two FoxF genes, and single FoxQ1 and FoxL1 genes, demonstrating cluster duplication preceded the radiation of gnathostomes. The expression of all six genes was analyzed by in situ hybridization. The results show conserved expression of FoxL1, FoxF, and FoxC genes in different compartments of the mesoderm and of FoxQ1 in pharyngeal endoderm and its derivatives, confirming these as ancient sites of Fox gene expression, and also illustrate multiple cases of lineage-specific expression domains. Comparison to invertebrate chordates shows that the majority of conserved vertebrate expression domains mark tissues that are part of the primitive chordate body plan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fox genes are united by encoding a fork head domain, a deoxyribonucleic acid (DNA)-binding domain of the winged-helix type that marks these genes as encoding transcription factors. Vertebrate Fox genes are classified into 23 subclasses named from FoxA to FoxS. We have surveyed the genome of the amphioxus Branchiostoma floridae, identifying 32 distinct Fox genes representing 21 of these 23 subclasses. The missing subclasses, FoxR and FoxS, are specific to vertebrates, and in addition, B. floridae has one further group, FoxAB, that is not found in vertebrates. Hence, we conclude B. floridae has maintained a high level of Fox gene diversity. Expressed sequence tag and complementary DNA sequence data support the expression of 23 genes. Several linkages between B. floridae Fox genes were noted, including some that have evolved relatively recently via tandem duplication in the amphioxus lineage and others that are more ancient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 3' untranslated regions (3'UTRs) of flaviviruses are reviewed and analyzed in relation to short sequences conserved as direct repeats (DRs). Previously, alignments of the 3'UTRs have been constructed for three of the four recognized flavivirus groups, namely mosquito-borne, tick-borne, and nonclassified flaviviruses (MBFV, TBFV, and NCFV, respectively). This revealed (1) six long repeat sequences (LRSs) in the 3'UTR and open-reading frame (ORF) of the TBFV, (2) duplication of the 3'UTR of the NCFV by intramolecular recombination, and (3) the possibility of a common origin for all DRs within the MBFV. We have now extended this analysis and review it in the context of all previous published analyses. This has been achieved by constructing a robust alignment between all flaviviruses using the published DRs and secondary RNA structures as "anchors" to reveal additional homologies along the 3'UTR. This approach identified nucleotide regions within the MBFV, NKV (no-known vector viruses), and NCFV 3'UTRs that are homologous to different LRSs in the TBFV 3'UTR and ORF. The analysis revealed that some of the DRs and secondary RNA structures described individually within each flavivirus group share common evolutionary origins. The 3'UTR of flaviviruses, and possibly the ORF, therefore probably evolved through multiple duplication of an RNA domain, homologous to the LRS previously identified only in the TBFV. The short DRs in all virus groups appear to represent the evolutionary remnants of these domains rather than resulting from new duplications. The relevance of these flavivirus DRs to evolution, diversity, 3'UTR enhancer function, and virus transmission is reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flavivirus replication is mediated by interactions between complementary ssRNA sequences of the 5'- and 3'-termini that form dsRNA cyclisation stems or panhandles, varying in length, sequence and specific location in the mosquito-borne, tick-borne, non-vectored and non-classified flaviviruses. In this manuscript we manually aligned the flavivirus 5'UTRs and adjacent capsid genes and revealed significantly more homology than has hitherto been identified. Analysis of the alignments revealed that the panhandles represent evolutionary remnants of a long cyclisation domain that probably emerged through duplication of one of the UTR termini.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homeobox genes encode DNA-binding proteins, many of which are implicated in the control of embryonic development. Evolutionarily, most homeobox genes fall into two related clades: the ANTP and the PRD classes. Some genes in ANTP class, notably Hox, ParaHox, and NK genes, have an intriguing arrangement into physical clusters. To investigate the evolutionary history of these gene clusters, we examined homeobox gene chromosomal locations in the cephalochordate amphioxus, Branchiostoma floridae. We deduce that 22 amphioxus ANTP class homeobox genes localize in just three chromosomes. One contains the Hox cluster plus AmphiEn, AmphiMnx, and AmphiDll. The ParaHox cluster resides in another chromosome, whereas a third chromosome contains the NK type homeobox genes, including AmphiMsx and ArnphiTlx. By comparative analysis we infer that clustering of ANTP class homeobox genes evolved just once, during a series of extensive cis-duplication events of genes early in animal evolution. A trans-duplication event occurred later to yield the Hox and ParaHox gene clusters on different chromosomes. The results obtained have implications for understanding the origin of homeobox gene clustering, the diversification of the ANTP class of homeobox genes, and the evolution of animal genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the cloning of an intermediate filament (IF) cDNA from the cephalochordate amphioxus that encodes a protein assignable to the type I keratin group. This is the first type I keratin reported from an invertebrate. Molecular phylogenetic analyses reveal that amphioxus also possesses a type II keratin, and that the genes encoding short-rod IF proteins underwent different patterns of duplication in vertebrates and their closest relatives, the cephalochordates. Extensive IF gene duplication and divergence may have facilitated the origin of new specialised cell types in vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aromatic amino acid hydroxylase (AAAH) genes and insulin-like genes form part of an extensive paralogy region shared by human chromosomes 11 and 12, thought to have arisen by tetraploidy in early vertebrate evolution. Cloning of a complementary DNA (cDNA) for an amphioxus (Branchiostoma floridae) hydroxylase gene (AmphiPAH) allowed us to investigate the ancestry of the human chromosome 11/12 paralogy region. Molecular phylogenetic evidence reveals that AmphiPAH is orthologous to vertebrate phenylalanine (PAH) genes; the implication is that all three vertebrate AAAH genes arose early in metazoan evolution, predating vertebrates. In contrast, our phylogenetic analysis of amphioxus and vertebrate insulin-related gene sequences is consistent with duplication of these genes during early chordate ancestry. The conclusion is that two tightly linked gene families on human chromosomes 11 and 12 were not duplicated coincidentally. We rationalize this paradox by invoking gene loss in the AAAH gene family and conclude that paralogous genes shared by paralogous chromosomes need not have identical evolutionary histories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. As regards the starch content in the seeds of crop plants, there are distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare the evolutionary rate, gene duplication and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed (i) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred prior to the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots; (ii) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed; (iii) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, e.g. AGPase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ~200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparative mapping is an important component of map-based cloning in large-genome cereal species. We describe evidence of a segmental chromosomal duplication harbouring CONSTANS-like genes in barley that predates the divergence of the Oryzoideae (rice) and Pooideae (brachypodium, barley, wheat) clades, and discuss the implications of such events for comparative mapping and QTL cloning in temperate cereal crops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS (TM) clones with insert sizes similar to 20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter beta-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor > 40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.