2 resultados para nitriding mechanisms

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius–Clapeyron relationship of saturation specific humidity to temperature is critical in (2) and (3). We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A climatology of almost 700 extratropical cyclones is compiled by applying an automated feature tracking algorithm to a database of objectively identified cyclonic features. Cyclones are classified according to the relative contributions to the midlevel vertical motion of the forcing from upper and lower levels averaged over the cyclone intensification period (average U/L ratio) and also by the horizontal separation between their upper-level trough and low-level cyclone (tilt). The frequency distribution of the average U/L ratio of the cyclones contains two significant peaks and a long tail at high U/L ratio. Although discrete categories of cyclones have not been identified, the cyclones comprising the peaks and tail have characteristics that have been shown to be consistent with the type A, B, and C cyclones of the threefold classification scheme. Using the thresholds in average U/L ratio determined from the frequency distribution, type A, B, and C cyclones account for 30\%, 38\%, and 32\% of the total number of cyclones respectively. Cyclones with small average U/L ratio are more likely to be developing cyclones (attain a relative vorticity $\ge 1.2 \times 10^{-4} \mbox{s}^{-1}$) whereas cyclones with large average U/L ratio are more likely to be nondeveloping cyclones (60\% of type A cyclones develop whereas 31\% of type C cyclones develop). Type A cyclogenesis dominates in the development region East of the Rockies and over the gulf stream, type B cyclogenesis dominates in the region off the East coast of the USA, and type C cyclogenesis is more common over the oceans in regions of weaker low-level baroclinicity.