2 resultados para neutron detection wall
em CentAUR: Central Archive University of Reading - UK
Resumo:
Solar energetic particles (SEPs) occasionally contribute additional atmospheric ionization beyond that arising from the usual galactic cosmic ray background. During an SEP event associated with a solar flare on April 11, 2013, the vertical ionization rate profile obtained using a balloon-borne detector showed enhanced ionization with a 26% increase at 20 km, over Reading, United Kingdom. Fluctuations in atmospheric electrical parameters were also detected at the surface, beneath the balloon’s trajectory. As no coincident changes in geomagnetism occurred, the electrical fluctuations are very likely to be associated with increased ionization, as observed by the balloon measurements. The lack of response of surface neutron monitors during this event indicates that energetic particles that are not detected at the surface by neutron monitors can nevertheless enter and influence the atmosphere’s weather-generating regions.
Resumo:
Cell wall polysaccharides of wheat and rice endosperm are an important source of dietary fibre. Monoclonal antibodies specific to cell wall polysaccharides were used to determine polysaccharide dynamics during the development of both wheat and rice grain. Wheat and rice grain present near synchronous developmental processes and significantly different endosperm cell wall compositions, allowing the localisation of these polysaccharides to be related to developmental changes. Arabinoxylan (AX) and mixed-linkage glucan (MLG) have analogous cellular locations in both species, with deposition of AX and MLG coinciding with the start of grain filling. A glucuronoxylan (GUX) epitope was detected in rice, but not wheat endosperm cell walls. Callose has been reported to be associated with the formation of cell wall outgrowths during endosperm cellularisation and xyloglucan is here shown to be a component of these anticlinal extensions, occurring transiently in both species. Pectic homogalacturonan (HG) was abundant in cell walls of maternal tissues of wheat and rice grain, but only detected in endosperm cell walls of rice in an unesterified HG form. A rhamnogalacturonan-I (RG-I) backbone epitope was observed to be temporally regulated in both species, detected in endosperm cell walls from 12 DAA in rice and 20 DAA in wheat grain. Detection of the LM5 galactan epitope showed a clear distinction between wheat and rice, being detected at the earliest stages of development in rice endosperm cell walls, but not detected in wheat endosperm cell walls, only in maternal tissues. In contrast, the LM6 arabinan epitope was detected in both species around 8 DAA and was transient in wheat grain, but persisted in rice until maturity.