3 resultados para neutralisation

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compares two sets of measurements of the composition of bulk precipitation and throughfall at a site in southern England with a 20-year gap between them. During this time, SO2 emissions from the UK fell by 82%, NOx emissions by 35% and NH3 emissions by 7%. These reductions were partly reflected in bulk precipitation, with deposition reductions of 56% in SO4,38% in NO3, 32% in NH4, and 73% in H+. In throughfall under Scots pine, the effects were more dramatic, with an 89% reduction in SO4 deposition and a 98% reduction in H+ deposition. The mean pH under these trees increased from 2.85 to 4.30. Nitrate and ammonium deposition in throughfall increased slightly, however. In the earlier period, the Scots pines were unable to neutralise the high flux of acidity associated with sulphur deposition, even though this was not a highly polluted part of the UK, and deciduous trees (oak and birch) were only able to neutralise it in summer when the leaves were present. In the later period, the sulphur flux had reduced to the point where the acidity could be neutralised by all species — the neutralisation mechanism is thus likely to be largely leaching of base cations and buffering substances from the foliage. The high fluxes are partly due to the fact that these are 60–80 year old trees growing in an open forest structure. The increase in NO3 and NH4 in throughfall in spite of decreased deposition seems likely due to a decrease in foliar uptake, perhaps due to the increasing nitrogen saturation of the catchment soils. These changes may increase the rate of soil microbial activity as nitrogen increases and acidity declines, with consequent effects on water quality of the catchment drainage stream.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrified aerosols have been observed in the lower troposphere and in the mesosphere, but have never been detected in the stratosphere and upper troposphere. We present measurements of aerosols obtained during a balloon flight to an altitude of 24 km. The measurements were per- formed with an improved version of the Stratospheric and Tropospheric Aerosol Counter (STAC) aerosol counter dedi- cated to the search for charged aerosols. It is found that most of the aerosols are charged in the upper troposphere for altitudes below 10 km and in the stratosphere for altitudes above 20 km. Conversely, the aerosols seem to be uncharged between 10 km and 20 km. Model calculations are used to quantify the electrification of the aerosols with a stratospheric aerosol–ion model. The percentages of charged aerosols obtained with model calculations are in excellent agreement with the observations below 10 km and above 20 km. However, the model cannot reproduce the absence of electrification found in the lower stratosphere, as the processes leading to neutralisation in this altitude range are unknown. The presence of sporadic transient layers of electrified aerosol in the upper troposphere and in the stratosphere could have significant implications for sprite formation