6 resultados para neutral red retention assay

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Red meat consumption causes a dose-dependent increase in fecal apparent total N-nitroso compounds (ATNC). The genotoxic effects of these ATNCs were investigated using two different Comet assay protocols to determine the genotoxicity of fecal water samples. Fecal water samples were obtained from two studies of a total of 21 individuals fed diets containing different amounts of red meat, protein, heme, and iron. The first protocol incubated the samples with HT-29 cells for 5 min at 4 degrees C, whereas the second protocol used a longer exposure time of 30 min and a higher incubation temperature of 37 degrees C. DNA strand breaks were quantified by the tail moment (DNA in the comet tail multiplied by the comet tail length). The results of the two Comet assay protocols were significantly correlated (r = 0.35, P = 0.003), however, only the second protocol resulted in detectable levels of DNA damage. Inter-individual effects were variable and there was no effect on fecal water genotoxicity by diet (P > 0.20), mean transit time (P = 0.588), or weight (P = 0.705). However, there was a highly significant effect of age (P = 0.019). There was no significant correlation between concentrations of ATNCs in fecal homogenates and fecal water genotoxicity (r = 0.04, P = 0.74). ATNC levels were lower in fecal water samples (272 microg/kg) compared to that of fecal homogenate samples (895 microg/kg) (P < 0.0001). Failure to find dietary effects on fecal water genotoxicity may therefore be attributed to individual variability and low levels of ATNCs in fecal water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the NO-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Employing immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-3H-Arginine to L-3H-Citrulline in a Ca2+/Calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform the activity of which is compromised in patients with coronary artery disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cosmic rays produce molecular cluster ions as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. In an atmospheric experiment, a narrowband thermopile filter radiometer centred on 9.15 {\mu}m, an absorption band previously associated with infra-red absorption of molecular cluster ions, was used to monitor changes following events identified by a cosmic ray telescope sensitive to high-energy (>400 MeV) particles, principally muons. The average change in longwave radiation in this absorption band due to molecular cluster ions is 7 mWm sup{-2}. The integrated atmospheric energy density for each event is 2 Jm sup{-2}, representing an amplification factor of 10 sup{12} compared to the estimated energy density of a typical air shower. This absorption is expected to occur continuously and globally, but calculations suggest that it has only a small effect on climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Pine bark is a rich source of phytochemical compounds including tannins, phenolic acids, anthocyanins, and fatty acids. These phytochemicals have potential to significantly impact on animal health and animal production. The goal of this work is to measure the effects of tannins in ground pine bark as a partial feed replacement on feed intake, dietary apparent digestibility, nitrogen balance, and mineral retention in meat goats. Results Eighteen Kiko cross goats (initial BW = 31.8 ± 1.49 kg) were randomly assigned to three treatment groups (n = 6). Dietary treatments were tested: control (0 % pine bark powder (PB) and 30 % wheat straw (WS)); 15 % PB and 15 % WS, and 30 % PB and 0 % WS. Although dry matter (DM) intake and digestibility were not affected (P > 0.10) by feeding PB, neutral detergent fiber (linear; P = 0.01), acid detergent fiber (linear; P = 0.001) and lignin digestibility (linear; P = 0.01) decreased, and crude protein (CP) digestibility tended to decrease (P = 0.09) as PB increased in the diet, apparent retention of Ca (P = 0.09), P (P = 0.03), Mg (P = 0.01), Mn (P = 0.01), Zn (P = 0.01) and Fe (P = 0.09) also increased linearly. Nitrogen intake and fecal N excretion were not affected (P > 0.05) by addition of PB in the diet, but N balance in the body was quadratically increased (P < 0.01) in the 15 % PB diet compared to other diets. This may be due to more rumen escape protein and less excreted N in the urine with the 15 % PB diet. The study showed that a moderate level of tannin-containing pine bark supplementation could improve gastrointestinal nitrogen balance with the aim of improving animal performance. Conclusion These results suggest that tannin-containing PB has negative impact on fiber, lignin, and protein digestibility, but positively impacted on N-balance.