29 resultados para neutral detergent soluble carbohydrates

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three goats provided with oesophageal and ruminal cannulae were used to determine variations in dry matter (DM) and neutral-detergent fibre (NDF) degradability of the forage consumed when grazing thorn scrubland in the semi-arid region of north Mexico, during two consecutive dry and wet periods. Ingesta samples were incubated intraruminally, the data were fitted to the exponential equation P = a + b (1-e(-ct)) and statistically analysed using a randomized-block design. Organic matter and crude protein (CP) contents were higher (P < 0.05) in the wet seasons. Values of NDF were similar in dry and wet season of both years whereas higher numerical values of acid-detergent fibre (ADF), lignin and cellulose were registered in the dry seasons. DM and NDF degradabilities after 24 and 48 h of ruminal incubation were higher (P < 0.05) in the wet seasons. Higher values (P < 0.05) in DM and NDF bag losses at zero time (A fraction) were registered in the two wet seasons. The insoluble but fermentable DM and NDF (B fractions) were higher (P < 0.05) in the 1999 wet season and variable in the rest of the studied period. Numerically higher values of DM and NDF c fraction were found in wet periods, whereas DM and NDF potential degradabilities were higher (P < 0.05) in the wet season in 1999 and similar across seasons in 2000. Lowest (P < 0.05) contents of CP in grazed forage, DM and NDF degradabilities after 48 h of ruminal incubation, and A, and B, and c fractions were observed in the dry seasons. Thus, these results may be related to both the lower feeding value of forage consumed by the animals and lower performance of livestock during this period. Then, the DM and NDF degradability after 48 h, together with the insoluble but fermentable matter and the c fraction permit the nutritive value of the forage consumed by grazing goats to be accurately described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improved nutrient utilization efficiency is strongly related to enhanced economic performance and reduced environmental footprint of dairy farms. Pasture-based systems are widely used for dairy production in certain areas of the world, but prediction equations of fresh grass nutritive value (nutrient digestibility and energy concentrations) are limited. Equations to predict digestible energy (DE) and metabolizable energy (ME) used for grazing cattle have been either developed with cattle fed conserved forage and concentrate diets or sheep fed previously frozen grass, and the majority of them require measurements less commonly available to producers, such as nutrient digestibility. The aim of the present study was therefore to develop prediction equations more suitable to grazing cattle for nutrient digestibility and energy concentrations, which are routinely available at farm level by using grass nutrient contents as predictors. A study with 33 nonpregnant, nonlactating cows fed solely fresh-cut grass at maintenance energy level for 50 wk was carried out over 3 consecutive grazing seasons. Freshly harvested grass of 3 cuts (primary growth and first and second regrowth), 9 fertilizer input levels, and contrasting stage of maturity (3 to 9 wk after harvest) was used, thus ensuring a wide representation of nutritional quality. As a result, a large variation existed in digestibility of dry matter (0.642-0.900) and digestible organic matter in dry matter (0.636-0.851) and in concentrations of DE (11.8-16.7 MJ/kg of dry matter) and ME (9.0-14.1 MJ/kg of dry matter). Nutrient digestibilities and DE and ME concentrations were negatively related to grass neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents but positively related to nitrogen (N), gross energy, and ether extract (EE) contents. For each predicted variable (nutrient digestibilities or energy concentrations), different combinations of predictors (grass chemical composition) were found to be significant and increase the explained variation. For example, relatively higher R(2) values were found for prediction of N digestibility using N and EE as predictors; gross-energy digestibility using EE, NDF, ADF, and ash; NDF, ADF, and organic matter digestibilities using N, water-soluble carbohydrates, EE, and NDF; digestible organic matter in dry matter using water-soluble carbohydrates, EE, NDF, and ADF; DE concentration using gross energy, EE, NDF, ADF, and ash; and ME concentration using N, EE, ADF, and ash. Equations presented may allow a relatively quick and easy prediction of grass quality and, hence, better grazing utilization on commercial and research farms, where nutrient composition falls within the range assessed in the current study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replacing grass silage with maize silage results in a fundamental change in the ratio of structural to non-structural carbohydrates with commensurate changes in rumen fermentation patterns and nutrient utilisation. This study investigated the effects of feeding four forage mixtures, namely grass silage (G); 67 g/100 g grass silage133 g/100 g maize silage (GGM); 67 g/100 g maize silage133/100 g grass silage (MMG); maize silage (M) to four ruminally and duodenally canulated Holstein Friesian steers. All diets were formulated to be isonitrogenous (22.4 g N/kg DM) using a concentrate mixture. Dietary dry matter (DM) and organic matter (OM) digestibility increased with ascending maize silage inclusion (P,0.1) whereas starch and neutral detergent fibre digestibility declined (P,0.05). Ratio of non-glucogenic to glucogenic precursors in the rumen fluid increased with maize silage inclusion (P,0.01) with a commensurate reduction in rumen pH (P,0.05). Mean circulating concentrations of insulin were greatest and similar in diets MMG and GGM, lower in diet M and lowest in diet G (P,0.01). There were no effects of diet on the mean circulating concentration of growth hormone (GH), or the frequency, amplitude and duration of GH pulses, or the mean circulating concentrations of IGF-1. Increasing levels of DM, OM and starch intakes with the substitution of grass silage with maize silage affected overall digestion, nutrient partitioning and subsequent circulating concentrations of insulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch, and decreases in the proportions of structural carbohydrates in the ensiled crop. This experiment investigated the effects of three maize silages of 291 (low), 339 (medium) and 393 (high) g DM per kg fresh weight on the performance of 48 Simmental. Holstein-Friesian cattle. Equal numbers of steers (mean start weight = 503 (s.d. 31.3) kg) and heifers (mean start weight = 378 (s.d. 11.2) kg) were offered individually isonitrogenous diets composed of the three silages plus a protein supplement with minerals once daily until slaughter at the target live weight of 575 and 475 kg for steers and heifers, respectively. Intake was reduced on the low diet (P < 0.01) compared with the other two treatments. Dietary starch intake increased by a total of 1 kg/day between low and medium diets but by only 0.2 kg/day between medium and high diets. Unlike starch intake, total neutral-detergent fibre intake showed no significant difference (P > 0.05) between diets. There were no differences in live-weight gain between treatments but differences (P < 0.05) in food conversion efficiency indicated relative gains of 115, 100 and 102 g gain per kg DM intake for diets low, medium and high, respectively. There were no differences between diets in carcass weights, fat score and overall conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch and decreases in the proportions of structural carbohydrates in the ensiled crop. Three maize silages (286 (low, L), 329 (medium, M) and 379 (high, H) g DM per kg fresh weight) plus a concentrate formulated to give isonitrogenous intakes were offered to Holstein-Friesian steers fitted with a cannula in the dorsal sac of the rumen and a 'T' piece cannula in the proximal duodenum in an experiment with a cross-over design that allowed four collection periods. Nutrient flow to the duodenum was estimated using chromium-EDTA. Steers consumed approximately 0(.)6 kg DM per day less of diet L compared with the other two diets (P=0(.)026), resulting in less DM being digested (P=0(.)005) but digestibility did not differ between diets. Similar results were obtained for organic matter. There were no differences between diets in the intake or digestibility of neutral-detergent fibre. Intake, duodenal flow and faecal output of starch were greater for steers offered diets M and H compared with those given diet L (P < 0(.)05). In all diets rumen digestion contributed to over 90% of total digestion of starch, although rumen digestibility declined significantly with advancing maize maturity (P=0(.)002). Molar proportions of acetic acid were higher in diet H (P < 0(.)05) whilst proportions of propionic acid and n-butyric acid were higher in diets M and L. There were no significant differences between diets in mean rumen pH or ammonia concentrations. Mean circulating concentrations of insulin were higher (P=0(.)009) in cattle given diets L and M compared with diet H. There were no differences between diets in the mean circulating concentration of growth hormone, or the frequency, amplitude and duration of growth hormone pulses, or the mean circulating concentrations of IGF-1. Changes in forage composition that accompany advancing maize maturity affect overall silage digestion and circulating concentrations of insulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four studies were conducted to compare the effect of four indigestible markers (LiCoEDTA, Yb-acetate, Cr-mordanted straw and indigestible neutral-detergent fibre (INDF)) and three marker systems on the flow of digesta entering the omasal canal of lactating dairy cows. Samples of digesta aspirated from the omasal canal were pooled and separated using filtration and high-speed centrifugation into three fractions defined as the liquid phase, small particulate and large particulate matter. Co was primarily associated with the liquid phase, Yb was concentrated in small particulate matter, whilst Cr and INDF were associated with large particles. Digesta flow was calculated based on single markers or using the reconstitution system based on combinations of two (Co + Yb, Co + Cr and Co + INDF) or three markers (Co + Yb + Cr and Co + Yb + INDF). Use of single markers resulted in large differences between estimates of organic matter (OM) flow entering the omasal canal suggesting that samples were not representative of true digesta. Digesta appeared to consist of at least three phases that tended to separate during sampling. OM was concentrated in particulate matter, whilst the liquid phase consisted mainly of volatile fatty acids and inorganic matter. Yb was intimately associated with nitrogenous compounds, whereas Cr and INDF were concentrated in fibrous material. Current data indicated that marker systems based on Yb in combination with Cr or INDF are required for the accurate determination of OM, N and neutral-detergent fibre flow. In cases where the flow of water-soluble nutrients entering the omasal canal is also required, the marker system should also include Co.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pasture-based ruminant production systems are common in certain areas of the world, but energy evaluation in grazing cattle is performed with equations developed, in their majority, with sheep or cattle fed total mixed rations. The aim of the current study was to develop predictions of metabolisable energy (ME) concentrations in fresh-cut grass offered to non-pregnant non-lactating cows at maintenance energy level, which may be more suitable for grazing cattle. Data were collected from three digestibility trials performed over consecutive grazing seasons. In order to cover a range of commercial conditions and data availability in pasture-based systems, thirty-eight equations for the prediction of energy concentrations and ratios were developed. An internal validation was performed for all equations and also for existing predictions of grass ME. Prediction error for ME using nutrient digestibility was lowest when gross energy (GE) or organic matter digestibilities were used as sole predictors, while the addition of grass nutrient contents reduced the difference between predicted and actual values, and explained more variation. Addition of N, GE and diethyl ether extract (EE) contents improved accuracy when digestible organic matter in DM was the primary predictor. When digestible energy was the primary explanatory variable, prediction error was relatively low, but addition of water-soluble carbohydrates, EE and acid-detergent fibre contents of grass decreased prediction error. Equations developed in the current study showed lower prediction errors when compared with those of existing equations, and may thus allow for an improved prediction of ME in practice, which is critical for the sustainability of pasture-based systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable -cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diet digestibility and rate of passage, eating and rumination behavior, dry matter intake (DMI), and lactation performance were compared in 6 Jersey and 6 Holstein multiparous cows. Cows were fed gestation diets according to body weight (BW) beginning 7 wk before expected calving and ad libitum amounts of a lactation diet postpartum. Diet digestibility and rate of passage were measured in 5-d periods at wk 5 prepartum and wk 6 and 14 of lactation. Eating and ruminating behavior was measured over 5-d periods at wk 5 and 2 prepartum and wk 2, 6, 10, and 14 of lactation. Milk yield and DMI were higher in Holsteins, but milk energy output per kilogram of metabolic BW (BW0.75) and intake capacity (DMI/kg of BW) did not differ between breeds. Holsteins spent longer ruminating per day compared with Jerseys, but daily eating time did not differ between breeds. Jerseys spent more time eating and ruminating per unit of ingested feed. The duration and number of meals consumed did not differ between breeds, but the meals consumed by Jerseys were distributed more evenly throughout each 24-h period, providing a more regular supply of feed to the rumen. Feed passed through the digestive tract more quickly in Jerseys compared with Holsteins, suggesting particle breakdown and rumen outflow were faster in Jerseys, but this may also reflect the relative size of their digestive tract. Neutral detergent fiber digestibility was greater in Jerseys, despite the shorter rumen retention time, but digestibility of dry matter, organic matter, starch, and N did not differ between breeds. Utilization of digested N for tissue retention was higher at wk 5 prepartum and lower at wk 14 of lactation in Jerseys. In contrast to numerous published studies, intake capacity of Jerseys was not higher than that of Holsteins, but in the present study, cows were selected on the basis of equal expected milk energy yield per kilogram of metabolic BW. Digestibility of neutral detergent fiber and rate of digesta passage were higher in Jerseys, probably as a consequence of increased mastication per unit of feed consumed in Jerseys and their smaller size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to improve the prediction of the quantity and type of Volatile Fatty Acids (VFA) produced from fermented substrate in the rumen of lactating cows. A model was formulated that describes the conversion of substrate (soluble carbohydrates, starch, hemi-cellulose, cellulose, and protein) into VFA (acetate, propionate, butyrate, and other VFA). Inputs to the model were observed rates of true rumen digestion of substrates, whereas outputs were observed molar proportions of VFA in rumen fluid. A literature survey generated data of 182 diets (96 roughage and 86 concentrate diets). Coefficient values that define the conversion of a specific substrate into VFA were estimated meta-analytically by regression of the model against observed VFA molar proportions using non-linear regression techniques. Coefficient estimates significantly differed for acetate and propionate production in particular, between different types of substrate and between roughage and concentrate diets. Deviations of fitted from observed VFA molar proportions could be attributed to random error for 100%. In addition to regression against observed data, simulation studies were performed to investigate the potential of the estimation method. Fitted coefficient estimates from simulated data sets appeared accurate, as well as fitted rates of VFA production, although the model accounted for only a small fraction (maximally 45%) of the variation in VFA molar proportions. The simulation results showed that the latter result was merely a consequence of the statistical analysis chosen and should not be interpreted as an indication of inaccuracy of coefficient estimates. Deviations between fitted and observed values corresponded to those obtained in simulations. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancing maize crop maturity is associated with changes in ear-to-stover ratio which may have consequences for the digestibility of the ensiled crop. The apparent digestibility and nitrogen retention of three diets (Early, Mid and Late) containing maize silages made from maize of advancing harvest date [dry matter (DM) contents of the maize silages were 273, 314 and 367 g kg(-1) for the silages in the Early, Mid and Late diets respectively], together with a protein supplement offered in sufficient quantities to make the diets isonitrogenous, were measured in six Holstein-Friesian steers in an incomplete Latin square design with four periods. Dry-matter intake of maize silage tended to be least for the Early diet and greatest for the Medium diet (P=0(.)182). Apparent digestibility of DM and organic matter did not differ between diets. Apparent digestibility of energy was lowest in the Late diet (P = 0(.)057) and the metabolizable energy concentrations of the three silages were calculated as 11(.)0, 11(.)1 and 10(.)6 MJ kg(-1) DM for the Early, Medium and Late diets respectively (P = 0(.)068). No differences were detected between diets in starch digestibility but the number of undamaged grains present in the faeces of animals fed the Late diet was significantly higher than with the Early and Mid diets (P = 0(.)006). The apparent digestibility of neutral-detergent fibre of the diets reduced significantly as silage DM content increased (P = 0(.)012) with a similar trend for the apparent digestibility of acid-detergent fibre (P = 0(.)078). Apparent digestibility of nitrogen (N) was similar for the Early and Mid diets, both being greater than the Late diet (P = 0(.)035). Nitrogen retention did not differ between diets. It was concluded that delaying harvest until the DM content is above 300 g kg(-1) can negatively affect the nutritive value of maize silage in the UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substituting grass silage with maize silage in forage mixtures may result in one forage influencing the nutritive value of another in terms of whole tract nutrient digestibility and N utilisation. This experiment investigated effects of four forage combinations being, grass silage (G); 67 g/100 g grass silage + 33 g/100 g maize silage (GGM); 67 g/100 g maize silage + 33 g/100 g grass silage (MMG); maize silage (M). All diets were formulated to be isonitrogenous (22.4 g N/kg dry matter [DM]) using a concentrate mixture. Ration digestibility and N balance was determined using 7 Holstein Friesian steers (mean body weight 411.0 +/- 120.9 kg) in a cross-over design. Inclusion of maize silage in the diet had a positive linear effect on forage and total DM intake (P = 0.001), and on apparent DM and organic matter digestibility (both P = 0.048). Regardless of the silage ratio used, the metabolisable energy concentration of maize silage was calculated to be higher than that of grass silage (P = 0.058), and linearly related to the relative proportions of the two silages in the forage mixture. Inclusion of maize silage in the diet resulted in a linear decline in the apparent digestibility of starch (P = 0.022), neutral detergent fibre (P < 0.001) and acid detergent fibre (P = 0.003). Nitrogen retention, expressed as amount retained per day or in terms of body weight (g/100 kg) increased linearly with maize inclusion (P = 0.047 and 0.046, respectively). Replacing grass silage with maize silage caused linear responses according to the proportions of each forage in the diet, and that there were no associative effects of combining forages. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of in vitro experiments was carried out to examine the impact of enzyme application rate and incubation medium pH on the rate and extent of fermentation of alfalfa stems. In Experiment 1, a commercial enzyme product (Liquicell 2500, Specialty Enzyme and Biochemicals, Fresno, CA, USA) was added to alfalfa stems at six levels: 0, 0.51, 1.02, 2.55, 5.1, and 25.5 mu l/g (control and L1-L5, respectively) to forage DM in a completely randomized design, with a factorial arrangement of treatments. Rate and extent of fermentation and apparent organic matter degradation (OMD) were determined in vitro, using a gas production technique. Addition of enzyme linearly increased (P < 0.01) gas production for up to 12 h (68.9, 70.9, 67.6, 67.9, 71.9, and 74.9 ml/g OM for control, L1-L5, respectively) and OMD for up to 19 h incubation (0.425, 0.444, 0.433, 0.446, 0.443, and 0.451 for control, L1-L5, respectively), but no increases (P > 0.05) were detected thereafter. In Experiment 2, the effect of the same enzyme as used previously (added at 0.51 mu l/g forage DM, directly into the incubation medium), and buffer pH were examined using the ANKOM system, in a completely randomized design. Incubation medium pH was altered using 1 M citric acid, in order to obtain target initial pH values of 6.8 (control, no citric acid added), 6.2, 5.8, and 5.4. Actual initial pH values achieved were 6.72, 6.50, 6.20, and 5.72. Lowering the pH decreased (P < 0.01) dry matter disappearance (DMD) at 18 h incubation (0.339, 0.341, 0.314, and 0.291 for 6.72, 6.50, 6.20, and 5.72, respectively), whereas enzyme addition increased (P < 0.05) DMD at 24 h (0.363 versus 0.387 for control and enzyme-treated, respectively). Addition of enzyme increased (P < 0.05) neutral detergent fibre (NDF), acid detergent fibre (ADF), and hemicellulose (HC) degradation at pH 6.50 (0.077 versus 0.117; 0.020 versus 0.051; 0.217 versus 0.270 for control and enzyme-treated NDF, ADF and hemicellulose degradation, respectively) and 6.72 (0.091 versus 0.134; 0.041 versus 0.079; 0.205 versus 0.261 for control and enzyme-treated NDF, ADF and HC degradation, respectively). It is concluded that the positive effects of this enzyme product were independent of the pre-treatment period, but pH influenced the responses to enzyme supplementation. Under the conditions of this experiment, exogenous fibrolytic enzymes seemed to work better at close to neutrality ruminal pH conditions. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.