13 resultados para neurobiology

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanisms and consequences of the effects of estrogen on the brain have been studied both at the fundamental level and with therapeutic applications in mind. Estrogenic hormones binding in particular neurons in a limbic-hypothalamic system and their effects on the electrophysiology and molecular biology of medial hypothalamic neurons were central in establishing the first circuit for a mammalian behavior, the female-typical mating behavior, lordosis. Notably, the ability of estradiol to facilitate transcription from six genes whose products are important for lordosis behavior proved that hormones can turn on genes in specific neurons at specific times, with sensible behavioral consequences. The use of a gene knockout for estrogen receptor alpha (ERalpha) revealed that homozygous mutant females simply would not do lordosis behavior and instead were extremely aggressive, thus identifying a specific gene as essential for a mammalian social behavior. In dramatic contrast, ERbeta knockout females can exhibit normal lordosis behavior. With the understanding, in considerable mechanistic detail, of how the behavior is produced, now we are also studying brain mechanisms for the biologically adaptive influences which constrain reproductive behavior. With respect to cold temperatures and other environmental or metabolic circumstances which are not consistent with successful reproduction, we are interested in thyroid hormone effects in the brain. Competitive relations between two types of transcription factors - thyroid hormone receptors and estrogen receptors have the potential of subserving the blocking effects of inappropriate environmental circumstances on female reproductive behaviors. TRs can compete with ERalpha both for DNA binding to consensus and physiological EREs and for nuclear coactivators. In the presence of both TRs and ERs, in transfection studies, thyroid hormone coadministration can reduce estrogen-stimulated transcription. These competitive relations apparently have behavioral consequences, as thyroid hormones will reduce lordosis, and a TRbeta gene knockout will increase it. In sum, we not only know several genes that participate in the selective control of this sex behavior, but also, for two genes, we know the causal routes. Estrogenic hormones are also the foci of widespread attention for their potential therapeutic effects improving, for example, certain aspects of mood and cognition. The former has an efficient animal analog, demonstrated by the positive effects of estrogen in the Porsolt forced swim test. The latter almost certainly depends upon trophic actions of estrogen on several fundamental features of nerve cell survival and growth. The hypothesis is raised that the synaptic effects of estrogens are secondary to the trophic actions of this type of hormone in the nucleus and nerve cell body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EGb 761 is a standardized extract from the Ginkgo biloba leaf and is purported to improve age-related memory impairment. The acute and chronic effect of EGb 761 on synaptic transmission and plasticity in hippocampal slices from young adult (8-12 weeks) and aged (18-24 months) C57B1/6 mice was tested because hippocampal plasticity is believed to be a key component of memory. Acutely applied EGb 761 significantly increased neuronal excitability in slices from aged mice by reducing the population spike threshold and increased the early phase of long-term potentiation, though there was no effect in slices from young adults. In chronically treated mice fed for 30 days with an EGb 761-supplemented diet, EGb 761 significantly increased the population spike threshold and long-term potentiation in slices from aged animals, but had no effect on slices from young adults. The rapid effects of EGb 761 on plasticity indicate a direct interaction with the glutamatergic system and raise interesting implications with respect to a mechanism explaining its effect on cognitive enhancement in human subjects experiencing dementia. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infant survival and the development of secure and cooperative relationships are central to the future of the species. In humans, this relies heavily on the evolving early parent–infant social and affective relationship. While much is known about the behavioural and psychological components of this relationship, relatively little is known about the underlying functional neuroanatomy. Affective and social neuroscience has helped to describe the main adult brain networks involved, but has so far engaged very little with developmental findings. In this review, we seek to highlight future avenues for research by providing a coherent framework for describing the parent–infant relationship over the first 18 months. We provide an outline of the evolving nature of the relationship, starting with basic orienting and recognition processes, and culminating in the infant's attainment of higher socio-emotional and cognitive capacities. Key social and affective interactions, such as communication, cooperative play and the establishment of specific attachments propel the development of the parent–infant relationship. We summarise our current knowledge of the developing infant brain in terms of structure and function, and how these relate to the emergent abilities necessary for the formation of a secure and cooperative relationship with parents or other caregivers. Important roles have been found for brain regions including the orbitofrontal, cingulate, and insular cortices in parent–infant interactions, but it has become clear that much more information is needed about the developmental time course and connectivity of these regions.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations of existing neural networks during healthy aging, resulting in behavioral deficits and changes in brain activity, have been described for cognitive, motor, and sensory functions. To investigate age-related changes in the neural circuitry underlying overt non-lexical speech production, functional MRI was performed in 14 healthy younger (21–32 years) and 14 healthy older individuals (62–84 years). The experimental task involved the acoustically cued overt production of the vowel /a/ and the polysyllabic utterance /pataka/. In younger and older individuals, overt speech production was associated with the activation of a widespread articulo-phonological network, including the primary motor cortex, the supplementary motor area, the cingulate motor areas, and the posterior superior temporal cortex, similar in the /a/ and /pataka/ condition. An analysis of variance with the factors age and condition revealed a significant main effect of age. Irrespective of the experimental condition, significantly greater activation was found in the bilateral posterior superior temporal cortex, the posterior temporal plane, and the transverse temporal gyri in younger compared to older individuals. Significantly greater activation was found in the bilateral middle temporal gyri, medial frontal gyri, middle frontal gyri, and inferior frontal gyri in older vs. younger individuals. The analysis of variance did not reveal a significant main effect of condition and no significant interaction of age and condition. These results suggest a complex reorganization of neural networks dedicated to the production of speech during healthy aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infant survival and the development of secure and cooperative relationships are central to the future of the species. In humans, this relies heavily on the evolving early parent–infant social and affective relationship. While much is known about the behavioural and psychological components of this relationship, relatively little is known about the underlying functional neuroanatomy. Affective and social neuroscience has helped to describe the main adult brain networks involved, but has so far engaged very little with developmental findings. In this review, we seek to highlight future avenues for research by providing a coherent framework for describing the parent–infant relationship over the first 18 months. We provide an outline of the evolving nature of the relationship, starting with basic orienting and recognition processes, and culminating in the infant's attainment of higher socio-emotional and cognitive capacities. Key social and affective interactions, such as communication, cooperative play and the establishment of specific attachments propel the development of the parent–infant relationship. We summarise our current knowledge of the developing infant brain in terms of structure and function, and how these relate to the emergent abilities necessary for the formation of a secure and cooperative relationship with parents or other caregivers. Important roles have been found for brain regions including the orbitofrontal, cingulate, and insular cortices in parent–infant interactions, but it has become clear that much more information is needed about the developmental time course and connectivity of these regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Emotion regulation is critically disrupted in depression and use of paradigms tapping these processes may uncover essential changes in neurobiology during treatment. In addition, as neuroimaging outcome studies of depression commonly utilize solely baseline and endpoint data – which is more prone to week-to week noise in symptomatology – we sought to use all data points over the course of a six month trial. Objective: To examine changes in neurobiology resulting from successful treatment. Design: Double-blind trial examining changes in the neural circuits involved in emotion regulation resulting from one of two antidepressant treatments over a six month trial. Participants were scanned pretreatment, at 2 months and 6 months posttreatment. Setting: University functional magnetic resonance imaging facility. Participants: 21 patients with Major Depressive Disorder and without other Axis I or Axis II diagnoses and 14 healthy controls. Interventions: Venlafaxine XR (doses up to 300mg) or Fluoxetine (doses up to 80mg). Main Outcome Measure: Neural activity, as measured using functional magnetic resonance imaging during performance of an emotion regulation paradigm as well as regular assessments of symptom severity by the Hamilton Rating Scale for Depression. To utilize all data points, slope trajectories were calculated for rate of change in depression severity as well as rate of change of neural engagement. Results: Those depressed individuals showing the steepest decrease in depression severity over the six months were those individuals showing the most rapid increases in BA10 and right DLPFC activity when regulating negative affect over the same time frame. This relationship was more robust than when using solely the baseline and endpoint data. Conclusions: Changes in PFC engagement when regulating negative affect correlate with changes in depression severity over six months. These results are buttressed by calculating these statistics which are more reliable and robust to week-to-week variation than difference scores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is a devastating disorder that affects approximately 1 in 10,000 people and is accompanied by neuronal dysfunction and neurodegeneration. HD manifests as a progressive chorea, a decline in mental abilities accompanied by behavioural, emotional and psychiatric problems followed by, dementia, and ultimately, death. The molecular pathology of HD is complex but includes widespread transcriptional dysregulation. Although many transcriptional regulatory molecules have been implicated in the pathogenesis of HD, a growing body of evidence points to the pivotal role of RE1 Silencing Transcription Factor (REST). In HD, REST, translocates from the cytoplasm to the nucleus in neurons resulting in repression of key target genes such as BDNF. Since these original observations, several thousand direct target genes of REST have been identified, including numerous non-coding RNAs including both microRNAs and long non-coding RNAs, several of which are dysregulated in HD. More recently, evidence is emerging that hints at epigenetic abnormalities in HD brain. This in turn, promotes the notion that targeting the epigenetic machinery may be a useful strategy for treatment of some aspects of HD. REST also recruits a host of histone and chromatin modifying activities that can regulate the local epigenetic signature at REST target genes. Collectively, these observations present REST as a hub that coordinates transcriptional, posttranscriptional and epigenetic programmes, many of which are disrupted in HD. We identify several spokes emanating from this REST hub that may represent useful sites to redress REST dysfunction in HD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task-induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self-referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self-referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistive respiratory loading is an established stimulus for the induction of experimental dyspnoea. In comparison to unloaded breathing, resistive loaded breathing alters end-tidal CO2 (PETCO2), which has independent physiological effects (e.g. upon cerebral blood flow). We investigated the subjective effects of resistive loaded breathing with stabilized PETCO2 (isocapnia) during manual control of inspired gases on varying baseline levels of mild hypercapnia increased PETCO2). Furthermore, to investigate whether perceptual habituation to dyspnoea stimuli occurs, the study was repeated over four experimental sessions. Isocapnic hypercapnia did not affect dyspnoea unpleasantness during resistive loading. A post hoc analysis revealed a small increase of respiratory unpleasantness during unloaded breathing at +0.6 kPa, the level that reliably induced isocapnia. We didnot observe perceptual habituation over the four sessions. We conclude that isocapnic respiratory loading allows stable induction of respiratory unpleasantness, making it a good stimulus for multi-session studies of dyspnoea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes.