3 resultados para natural convection

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high thermal storage capacity of phase change material (PCM) can reduce energy consumption in buildings through energy storage and release when combined with renewable energy sources, night cooling, etc. PCM boards can be used to absorb heat gains during daytime and release heat at night. In this paper, the thermal performance of an environmental chamber fitted with phase change material boards has been investigated. During a full-cycle experiment, i.e. charging–releasing cycle, the PCM boards on a wall can reduce the interior wall surface temperature during the charging process, whereas the PCM wall surface temperature is higher than that of the other walls during the heat releasing process. It is found that the heat flux density of the PCM wall in the melting zone is almost twice as large as that of ordinary wall. Also, the heat-insulation performance of a PCM wall is better than that of an ordinary wall during the charging process, while during the heat discharging process, the PCM wall releases more heat energy. The convective heat transfer coefficient of PCM wall surface calculated using equations for a normal wall material produces an underestimation of this coefficient. The high convective heat transfer coefficient for a PCM wall is due to the increased energy exchange between the wall and indoor air.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many modern cities locate in the mountainous areas, like Hong Kong, Phoenix City and Los Angles. It is confirmed in the literature that the mountain wind system developed by differential heating or cooling can be very beneficial in ventilating the city nearby and alleviating the UHI effect. However, the direct interaction of mountain wind with the natural-convection circulation due to heated urban surfaces has not been studied, to our best knowledge. This kind of unique interaction of two kinds of airflow structures under calm and neutral atmospheric environment is investigated in this paper by CFD approach. A physical model comprising a simple mountain and three long building blocks (forming two street canyons) is firstly developed. Different airflow structures are identified within the conditions of different mountain-building height ratios (R=Hm/Hb) by varying building height but fixing mountain height. It is found that the higher ventilation rate in the street canyons is expected in the cases of smaller mountain-building ratios, indicating the stronger natural convection due to increasing heated building surfaces. However, there is the highest air change rate (ACH) in the lowest-building-height case and most of the air is advective into the street canyon through the top open area, highlighting the important role played by the mountain wind. In terms of the ventilation efficiency, it is shown that the smallest R case enjoys the best air change efficiency followed by the highest R case, while the worst ventilative street canyons occur at the middle R case. In the end, a gap across the streets is introduced in the modeling. The existence of the gap can greatly channel the mountain wind and distribute the air into streets nearby. Thus the ACH can be doubled and air quality can be significantly improved.