63 resultados para native gels
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper reviews late Roman `nail-cleaner strap-ends', a group of objects first discussed by Hawkes and Dunning (1961). The precise function of these objects is unclear as their shape suggests use as toilet instruments but the split socket suggests that they were part of belt-fittings. We suggest a detailed typology and discuss the dating evidence and the spatial distribution of the type. Regardless of their precise function, it is argued in this paper that nail-cleaner strap-ends of this type are unique to late Roman Britain and thus represent a distinct regional type. The use of nail-cleaner strap-ends can be viewed in the context of gender associations, military status and religious beliefs.
Resumo:
We examined the effect of the invasive Solanum elaeagnifolium (Solanaceae) on flower visitation patterns and seed set of the co-flowering native Glaucium flavum (Papaveraceae). We observed flowering G. flavum plants in invaded and uninvaded sites and found that G. flavum flowers in uninvaded sites received significantly more total visits. In addition, we hand-pollinated flowers on plants of G. flavum with (i) pure conspecific pollen, (ii) pure S. elaeagnifolium pollen and (iii) three different mixtures of the two types of pollen (containing 25, 50 and 75% invasive pollen). As a control, flowers were left unmanipulated or were permanently bagged. Seed set did not differ significantly between flowers receiving pollen mixtures and pure conspecific pollen. However, in the open pollination treatment, seed set was significantly lower than in the 100% conspecific pollen treatment, which suggests pollen limitation. Bagged flowers had very low seed set. G. flavum was generally resilient against the deposition of S. elaeagnifolium pollen.
Resumo:
Carbenes photogenerated from the novel bisdiazirine, 1, 3-bis(3-(trifluoromethyl)diazirin-3-yl) benzene 1, have been applied successfully to cross-linking of mono-methyl poly(ethylene oxide) (MePEO5000) in the presence of dichloromethane, leading to the simultaneous incorporation of alkylhalide functionalities. The PEO-based gels swell in a wide range of solvents with polarity index values varying from 3.1 to 9.0. Reaction of the alkylhalide functionalities present in the gels with 4-phenylazophenol provided loading capacities of up to 0.20 mmol g(-1) and demonstrated the potential of these materials for gel-phase synthesis applications. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The structure and shear flow behaviour of aqueous micellar solutions and gels formed by an amphiphilic poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer with a lengthy hydrophilic poly(oxyethylene) block has been investigated by rheology, small angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). SANS revealed that bridging of chains between micelles introduces, in the micellar solution, an attractive long-range component which can be described through a potential of interaction corresponding to sticky soft spheres. The strength of the attractive interaction increases with increasing concentration. Rheology showed that the dependence of the storage modulus with temperature can be explained as a function of the micellar bridging, micellisation and phase morphology. SAXS studies showed that the orientation adopted by the system in the get phase under shear is similar to that previously observed by us for the gel phase of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer with a long poly(oxyethylene) chain, suggesting that the micellar corona/core length ratio and not the architecture of the block copolymer influences the alignment of the gel phase under shear.
Resumo:
We study the effects of hydrostatic pressure (P) on aqueous solutions and gels of the block copolymer B20E610 (E, oxyethylene; B, oxybutylene; subscripts, number of repeats), by performing simultaneous small angle neutron scattering/pressure experiments. Micellar cubic gels were studied for 9.5 and 4.5 wt% B20E610 at T = 20-80 and 35-55 degrees C, respectively, while micellar isotropic solutions where Studied for 4.5 wt% B20E610 at T > 55 degrees C. We observed that the interplanar distance d(110) (cubic unit cell parameter a = root 2d(110)) decreases while the correlation length of the Cubic order (delta) increases, upon increasing P at a fixed T for 9.5 wt% B20E610. The construction of master Curves for d(110) and delta corresponding to 9.5 wt% B20E610 proved the correlation between changes in T and P. Neither d(110) and delta nor the cubic-isotropic phase transition temperature was affected by the applied pressure for 4.5 wt% B20E610. The dramatic contrast between the pressure-induced behavior observed for 9.5 and 4.5 wt% B20E610 suggests that pressure induced effects might be more effectively transmitted through samples that present wider domains of cubic structure order (9.5 wt% compared to 4.5 wt% B20E610).
Resumo:
Gel diagrams based on tube inversion and oscillatory rheometry are reported for Pluronic copolymers F127 (E98P67E98) and P123 (E21P67E21) in mixtures with anionic surfactant sodium dodecyl sulfate (SDS). Total concentrations (e, SDS+copolymer) were as high as 50 wt% with mole ratios SDS/copolymer (mr) in the ranges 1-5 (F127) a lid 1-7 (PI 23). Temperatures were its high as 90 degrees C. Determination of the temperature dependences of the dynamic moduli served to confirm the gel boundaries from tube inversion and to reveal the high elastic moduli of the gels, e.g., compared at corn parable positions in the gel phase, a 50 wt% SDS/P123 wit h mr = 7 had G' three times that of a corresponding gel of P123 alone. Sin all-angle X-ray scattering (SAX S) was used to show that the structures of all the SDS/F127 gels were bee and that the structures of the SDS/P123 gels with mr = I were either fcc(c = 30 wt%) or hex (c = 40 wt%). Assignment of structures to SDS/P123 gels with values of mr in the range 3-7 was more difficult, as high-order scattering peaks Could be very weak, and at the higher values of c and mr, the SAXS peaks included multiple reflections.
Resumo:
Small-angle X-ray scattering was used to characterise aqueous micellar gels of triblock copolymers E137S18E137, E82S9E82, E76S5E76, E62P39E62, and of two mixtures: E137S18E137 and E62P39E62 (Mix 1) and ES2S9E82 and E62P39E62 (Mix 2), each 50/50 wt%. E = oxyethylene, CH2CH2O; S = oxyphenylethylene, OCH2CH(C6H5); and P = oxypropylene, OCH2CH(CH3)- Within the concentration and temperature ranges investigated (30-40 wt% copolymer, 20-80 degrees C), spherical micelles of copolymers E137S18E137, E82S9ES2 and E62P39E62 packed into bodycentred cubic (BCC) structures. Gels of E76S5E76 were stable only at high concentrations and low temperatures, and a 70 wt/o copolymer solution at T = 30 degrees C formed a hexagonal gel consistent with cylindrical micelles. It is likely that the mixed copolymers would form two distributions of micelles, and more complex structures were expected. However, gels of Mix 2 had well-ordered BCC structures, while the less ordered gels of Mix 1 were also best characterised as BCC. (c) 2006 Society of Chemical Industry.
Resumo:
This paper investigates dendritic peptides capable of assembling into nanostructured gels, and explores the effect on self-assembly of mixing different molecular building blocks. Thermal measurements, small angle Xray scattering (SAXS) and circular dichroism (CD) spectroscopy are used to probe these materials on macroscopic, nanoscopic and molecular length scales. The results from these investigations demonstrate that in this case, systems with different "size" and "chirality" factors can self-organise, whilst systems with different "shape" factors cannot. The "size" and "chirality" factors are directly connected with the molecular information programmed into the dendritic peptides, whilst the shape factor depends on the group linking these peptides together-this is consistent with molecular recognition hydrogen bond pathways between the peptidic building blocks controlling the ability of these systems to self-recognise. These results demonstrate that mixtures of relatively complex peptides, with only subtle differences on the molecular scale, can self-organise into nanoscale structures, an important step in the spontaneous assembly of ordered systems from complex mixtures.
Resumo:
Two-component systems capable of self-assembling into soft gel-phase materials are of considerable interest due to their tunability and versatility. This paper investigates two-component gels based on a combination of a L-lysine-based dendron and a rigid diamine spacer (1,4-diaminobenzene or 1,4-diaminocyclohexane). The networked gelator was investigated using thermal measurements, circular dichroism, NMR spectroscopy and small angle neutron scattering (SANS) giving insight into the macroscopic properties, nanostructure and molecular-scale organisation. Surprisingly, all of these techniques confirmed that irrespective of the molar ratio of the components employed, the "solid-like" gel network always consisted of a 1:1 mixture of dendron/diamine. Additionally, the gel network was able to tolerate a significant excess of diamine in the "liquid-like" phase before being disrupted. In the light of this observation, we investigated the ability of the gel network structure to evolve from mixtures of different aromatic diamines present in excess. We found that these two-component gels assembled in a component-selective manner, with the dendron preferentially recognising 1,4-diaminobenzene (>70%). when similar competitor diamines (1,2- and 1,3-diaminobenzene) are present. Furthermore, NMR relaxation measurements demonstrated that the gel based oil 1,4-diaminobenzene was better able to form a selective ternary complex with pyrene than the gel based oil 1,4-diaminocyclohexane, indicative of controlled and selective pi-pi interactions within a three-component assembly. As such, the results ill this paper demonstrate how component selection processes in two-component gel systems call control hierarchical self-assembly.
Resumo:
Tofu gels were rheologically examined to determine their storage or elastic (G′) and loss or viscous (G″) moduli as a function of frequency within their linear viscoelastic limits. The tofu gels were made using either glucono-δ-lactone (GDL) or calcium sulphate (CaSO4·2H2O), followed by either heat treatment (heated soymilk at 97 °C prior to coagulation and subsequently held at 70 °C for 60 min, HT) or high pressure treatment (400 MPa at 20 °C for 10 min, HP). The overall moduli values of the GDL gels and CaSO4·2H2O gels of both physical treatments were similar, each gave frequency profiles expected for weak viscoelastic materials. However, although both temperature and high pressure treatments could be used to produce tofu gels, the final products were not the same. Pressure formed gels, despite having a higher overall “consistency” (increasing values of their moduli), had a proportionately higher contribution from the loss modulus (increased tan δ). Differences could also be observed using confocal scanning laser microscopy. While such treatment may give rise to differing systems/structures, with new or modified organoleptic properties, the more “open” structures obtained by pressure treatment may well cause processing difficulties if subsequent reworking or moulding is required.