31 resultados para multidrug resistance associated protein 1
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.
Resumo:
The ROCO proteins are a family of large, multidomain proteins characterised by the presence of a Ras of complex proteins (ROC) domain followed by a COR, or C-terminal of ROC, domain. It has previously been shown that the ROC domain of the human ROCO protein Leucine Rich Repeat Kinase 2 (LRRK2) controls its kinase activity. Here, the ability of the ROC domain of another human ROCO protein, Death Associated Protein Kinase 1 (DAPK1), to bind GTP and control its kinase activity has been evaluated. In contrast to LRRK2, loss of GTP binding by DAPK1 does not result in loss of kinase activity, instead acting to modulate this activity. These data highlight the ROC domain of DAPK1 as a target for modifiers of this proteins function, and casts light on the role of ROC domains as intramolecular regulators in complex proteins with implications for a broad range of human diseases.
Resumo:
Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.
Resumo:
Epidemiological studies suggest that a moderate consumption of anthocyanins may be associated with protection against coronary heart disease. The main dietary sources of anthocyanins include red-coloured fruits and red wine. Although dietary anthocyanins comprise a diverse mixture of molecules, little is known how structural diversity relates to their bioavailability and biological function. The aim of the present study was to evaluate the absorption and metabolism of the 3-monoglucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin in humans and to examine both the effect of consuming a red wine extract on plasma antioxidant status and on monocyte chemoattractant protein I production in healthy human subjects. After a 12-h overnight fast, seven healthy volunteers received 12 g of an anthocyanin extract and provided 13 blood samples in the 24 h following the test meal. Furthermore, urine was collected during this 24-h period. Anthocyanins were detected in their intact form in both plasma and urine samples. Other anthocyanin metabolites could also be detected in plasma and urine and were identified as glucuronides of peonidin and malvidin. Anthocyanins and their metabolites appeared in plasma about 30 min after ingestion of the test meal and reached their maximum value around 1.6 h later for glucosides and 2.5 h for glucuronides. Total urinary excretion of red wine anthocyanins was 0.05+/-0.01% of the administered dose within 24 h. About 94% of the excreted anthocyanins was found in urine within 6 h. In spite of the low concentration of anthocyanins found in plasma, an increase in the antioxidant capacity and a decrease in MCP-1 circulating levels in plasma were observed. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.
Resumo:
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR.RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.
Resumo:
Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene-related peptide (CGRP). Although CGRP induces endocytosis of CLR/RAMP1, little is known about post-endocytic sorting of these proteins. We observed that the duration of stimulation with CGRP markedly affected post-endocytic sorting of CLR/RAMP1. In HEK and SK-N-MC cells, transient stimulation (10(-7) M CGRP, 1 h), induced CLR/RAMP1 recycling with similar kinetics (2-6 h), demonstrated by labeling receptors in living cells with antibodies to extracellular epitopes. Recycling of CLR/RAMP1 correlated with resensitization of CGRP-induced increases in [Ca(2+)](i). Cycloheximide did not affect resensitization, but bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPases, abolished resensitization. Recycling CLR and RAMP1 were detected in endosomes containing Rab4a and Rab11a, and expression of GTPase-defective Rab4aS22N and Rab11aS25N inhibited resensitization. After sustained stimulation (10(-7) M CGRP, >2 h), CLR/RAMP1 trafficked to lysosomes. RAMP1 was degraded approximately 4-fold more rapidly than CLR (RAMP1, 45% degradation, 5 h; CLR, 54% degradation, 16 h), determined by Western blotting. Inhibitors of lysosomal, but not proteasomal, proteases prevented degradation. Sustained stimulation did not induce detectable mono- or polyubiquitination of CLR or RAMP1, determined by immunoprecipitation and Western blotting. Moreover, a RAMP1 mutant lacking the only intracellular lysine (RAMP1K142R) internalized and was degraded normally. Thus, after transient stimulation with CGRP, CLR and RAMP1 traffic from endosomes to the plasma membrane, which mediates resensitization. After sustained stimulation, CLR and RAMP1 traffic from endosomes to lysosomes by ubiquitin-independent mechanisms, where they are degraded at different rates.
Resumo:
The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.
Resumo:
Objectives: AcrA can function as the periplasmic adaptor protein (PAP) in several RND tripartite efflux pumps, of which AcrAB-TolC is considered the most important. This system confers innate multiple antibiotic resistance. Disruption of acrB or tolC impairs the ability of Salmonella Typhimurium to colonize and persist in the host. The aim of this study was to investigate the role of AcrA alone in multidrug resistance and pathogenicity. Methods: The acrA gene was inactivated in Salmonella Typhimurium SL1344 by insertion of the aph gene and this mutant complemented with pWKS30acrA. The antimicrobial susceptibility of the mutant to six antibiotics as well as various dyes and detergents was determined. In addition, efflux activity was quantified. The ability of the mutant to adhere to, and invade, tissue culture cells in vitro was measured. Results: Following disruption of acrA, RT-PCR and western blotting confirmed that acrB/AcrB was still expressed when acrA was disrupted. The acrA mutant was hypersusceptible to antibiotics, dyes and detergents. In some cases, lower MICs were seen than for the acrB or tolC mutants. Efflux of the fluorescent dye Hoechst H33342 was less than in wild-type following disruption of acrA. acrA was also required for adherence to, and invasion of, tissue culture cells. Conclusions: Inactivation of acrA conferred a phenotype distinct to that of acrB::aph and tolC::aph. These data indicate a role for AcrA distinct to that of other protein partners in both efflux of substrates and virulence.
Resumo:
Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.
Resumo:
SHP-1 is a Src homology 2 (SH2) domain-containing tyrosine phosphatase that plays an essential role in negative regulation of immune cell activity. We describe here a new model for regulation of SHP-1 involving phosphorylation of its C-terminal Ser(591) by associated protein kinase Calpha. In human platelets, SHP-1 was found to constitutively associate with its substrate Vav1 and, through its SH2 domains, with protein kinase Calpha. Upon activation of either PAR1 or PAR4 thrombin receptors, the association between the three proteins was retained, and Vav1 became phosphorylated on tyrosine and SHP-1 became phosphorylated on Ser(591). Phosphorylation of SHP-1 was mediated by protein kinase C and negatively regulated the activity of SHP-1 as demonstrated by a decrease in the in vitro ability of SHP-1 to dephosphorylate Vav1 on tyrosine. Protein kinase Calpha therefore critically and negatively regulates SHP-1 function, forming part of a mechanism to retain SHP-1 in a basal active state through interaction with its SH2 domains, and phosphorylating its C-terminal Ser(591) upon cellular activation leading to inhibition of SHP-1 activity and an increase in the tyrosine phosphorylation status of its substrates.
Resumo:
The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.
Resumo:
Aims: In view of recent findings that a multidrug efflux pump CmeABC exists in Campylobacter jejuni, 391 C. jejuni and 52 Campylobacter coli of human and animal origin were examined for a multidrug resistance phenotype. Materials and methods: The MICs of ampicillin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, tetracycline, cetrimide, triclosan, acridine orange, paraquat and ethidium bromide were determined. Resistance to organic solvents and the effect of salicylate (known inducer of the marRAB operon in Escherichia coli and Salmonella) were also examined. Results: Two C. coli and 13 C. jejuni isolates, mainly from pigs or poultry, were resistant to three or more antibiotics and 12 of these strains had reduced susceptibility to acridine orange and/or ethidium bromide. Strains (n=20) that were less susceptible to acridine orange, ethidium bromide and triclosan were significantly more resistant (P<0.05) to ampicillin, chloramphenicol, ciprofloxacin, erythromycin, nalidixic acid and tetracycline, with two- to four-fold increases in MIC values compared with strains (n=20) most susceptible to acridine orange, ethidium bromide and triclosan. Growth of strains with 1 mM salicylate caused a small (up to two-fold) but statistically significant (Pless than or equal to0.005) increase in the MICs of chloramphenicol, ciprofloxacin, erythromycin and tetracycline. Conclusions: These data indicate that multiple antibiotic resistant (MAR)-like Campylobacter strains occur and it may be postulated that these may overexpress cmeABC or another efflux system.
Resumo:
The human ROCO proteins are a family of multi-domain proteins sharing a conserved ROC-COR supra-domain. The family has four members: leu- cine-rich repeat kinase 1 (LRRK1), leucine-rich repeat kinase 2 (LRRK2), death-associated protein kinase 1 (DAPK1) and malignant fibrous histiocy- toma amplified sequences with leucine-rich tandem repeats 1 (MASL1). Previous studies of LRRK1/2 and DAPK1 have shown that the ROC (Ras of complex proteins) domain can bind and hydrolyse GTP, but the cellular consequences of this activity are still unclear. Here, the first biochemical characterization of MASL1 and the impact of GTP binding on MASL1 complex formation are reported. The results demonstrate that MASL1, similar to other ROCO proteins, can bind guanosine nucleotides via its ROC domain. Furthermore, MASL1 exists in two distinct cellular com- plexes associated with heat shock protein 60, and the formation of a low molecular weight pool of MASL1 is modulated by GTP binding. Finally, loss of GTP enhances MASL1 toxicity in cells. Taken together, these data point to a central role for the ROC/GTPase domain of MASL1 in the reg- ulation of its cellular function.
Resumo:
The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.