67 resultados para multi-system
em CentAUR: Central Archive University of Reading - UK
Resumo:
A set of four eddy-permitting global ocean reanalyses produced in the framework of the MyOcean project have been compared over the altimetry period 1993–2011. The main differences among the reanalyses used here come from the data assimilation scheme implemented to control the ocean state by inserting reprocessed observations of sea surface temperature (SST), in situ temperature and salinity profiles, sea level anomaly and sea-ice concentration. A first objective of this work includes assessing the interannual variability and trends for a series of parameters, usually considered in the community as essential ocean variables: SST, sea surface salinity, temperature and salinity averaged over meaningful layers of the water column, sea level, transports across pre-defined sections, and sea ice parameters. The eddy-permitting nature of the global reanalyses allows also to estimate eddy kinetic energy. The results show that in general there is a good consistency between the different reanalyses. An intercomparison against experiments without data assimilation was done during the MyOcean project and we conclude that data assimilation is crucial for correctly simulating some quantities such as regional trends of sea level as well as the eddy kinetic energy. A second objective is to show that the ensemble mean of reanalyses can be evaluated as one single system regarding its reliability in reproducing the climate signals, where both variability and uncertainties are assessed through the ensemble spread and signal-to-noise ratio. The main advantage of having access to several reanalyses differing in the way data assimilation is performed is that it becomes possible to assess part of the total uncertainty. Given the fact that we use very similar ocean models and atmospheric forcing, we can conclude that the spread of the ensemble of reanalyses is mainly representative of our ability to gauge uncertainty in the assimilation methods. This uncertainty changes a lot from one ocean parameter to another, especially in global indices. However, despite several caveats in the design of the multi-system ensemble, the main conclusion from this study is that an eddy-permitting multi-system ensemble approach has become mature and our results provide a first step towards a systematic comparison of eddy-permitting global ocean reanalyses aimed at providing robust conclusions on the recent evolution of the oceanic state.
Resumo:
This paper describes the development and first results of the “Community Integrated Assessment System” (CIAS), a unique multi-institutional modular and flexible integrated assessment system for modelling climate change. Key to this development is the supporting software infrastructure, SoftIAM. Through it, CIAS is distributed between the community of institutions which has each contributed modules to the CIAS system. At the heart of SoftIAM is the Bespoke Framework Generator (BFG) which enables flexibility in the assembly and composition of individual modules from a pool to form coupled models within CIAS, and flexibility in their deployment onto the available software and hardware resources. Such flexibility greatly enhances modellers’ ability to re-configure the CIAS coupled models to answer different questions, thus tracking evolving policy needs. It also allows rigorous testing of the robustness of IA modelling results to the use of different component modules representing the same processes (for example, the economy). Such processes are often modelled in very different ways, using different paradigms, at the participating institutions. An illustrative application to the study of the relationship between the economy and the earth’s climate system is provided.
Resumo:
We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.
Resumo:
We present a conceptual architecture for a Group Support System (GSS) to facilitate Multi-Organisational Collaborative Groups (MOCGs) initiated by local government and including external organisations of various types. Multi-Organisational Collaborative Groups (MOCGs) consist of individuals from several organisations which have agreed to work together to solve a problem. The expectation is that more can be achieved working in harmony than separately. Work is done interdependently, rather than independently in diverse directions. Local government, faced with solving complex social problems, deploy MOCGs to enable solutions across organisational, functional, professional and juridical boundaries, by involving statutory, voluntary, community, not-for-profit and private organisations. This is not a silver bullet as it introduces new pressures. Each member organisation has its own goals, operating context and particular approaches, which can be expressed as their norms and business processes. Organisations working together must find ways of eliminating differences or mitigating their impact in order to reduce the risks of collaborative inertia and conflict. A GSS is an electronic collaboration system that facilitates group working and can offer assistance to MOCGs. Since many existing GSSs have been primarily developed for single organisation collaborative groups, even though there are some common issues, there are some difficulties peculiar to MOCGs, and others that they experience to a greater extent: a diversity of primary organisational goals among members; different funding models and other pressures; more significant differences in other information systems both technologically and in their use than single organisations; greater variation in acceptable approaches to solve problems. In this paper, we analyse the requirements of MOCGs led by local government agencies, leading to a conceptual architecture for an e-government GSS that captures the relationships between 'goal', 'context', 'norm', and 'business process'. Our models capture the dynamics of the circumstances surrounding each individual representing an organisation in a MOCG along with the dynamics of the MOCG itself as a separate community.
Resumo:
This paper describes a multi-robot localization scenario where, for a period of time, the robot team loses communication with one of the robots due to system error. In this novel approach, extended Kalman filter (EKF) algorithms utilize relative measurements to localize the robots in space. These measurements are used to reliably compensate "dead-com" periods were no information can be exchanged between the members of the robot group.
Resumo:
Current and planned robotic rovers for space exploration are focused on science and correspondingly carry a science payload. Future missions will need robotic rovers that can demonstrate a wider range of functionality. This paper proposes an approach to offering this greater functionality by employing science and/or tool packs aboard a highly mobile robotic chassis. The packs are interchangeable and each contains different instruments or tools. The appropriate selection of science and/or tool packs enables the robot to perform a great variety of tasks either alone or in cooperation with other robots. The multi-tasking rover (MTR), thus conceived, provides a novel method for high return on investment. This paper describes the mobility system of the MTR and reports on initial experimental evaluation of the robotic chassis.
Resumo:
Where users are interacting in a distributed virtual environment, the actions of each user must be observed by peers with sufficient consistency and within a limited delay so as not to be detrimental to the interaction. The consistency control issue may be split into three parts: update control; consistent enactment and evolution of events; and causal consistency. The delay in the presentation of events, termed latency, is primarily dependent on the network propagation delay and the consistency control algorithms. The latency induced by the consistency control algorithm, in particular causal ordering, is proportional to the number of participants. This paper describes how the effect of network delays may be reduced and introduces a scalable solution that provides sufficient consistency control while minimising its effect on latency. The principles described have been developed at Reading over the past five years. Similar principles are now emerging in the simulation community through the HLA standard. This paper attempts to validate the suggested principles within the schema of distributed simulation and virtual environments and to compare and contrast with those described by the HLA definition documents.
Resumo:
Increased penetration of generation and decentralised control are considered to be feasible and effective solution for reducing cost and emissions and hence efficiency associated with power generation and distribution. Distributed generation in combination with the multi-agent technology are perfect candidates for this solution. Pro-active and autonomous nature of multi-agent systems can provide an effective platform for decentralised control whilst improving reliability and flexibility of the grid.
Resumo:
Wireless technology based pervasive healthcare has been proposed in many applications such as disease management and accident prevention for cost saving and promoting citizen’s wellbeing. However, the emphasis so far is on the artefacts with limited attentions to guiding the development of an effective and efficient solution for pervasive healthcare. Therefore, this paper aims to propose a framework of multi-agent systems design for pervasive healthcare by adopting the concept of pervasive informatics and using the methods of organisational semiotics. The proposed multi-agent system for pervasive healthcare utilises sensory information to support healthcare professionals for providing appropriate care. The key contributions contain theoretical aspect and practical aspect. In theory, this paper articulates the information interactions between the pervasive healthcare environment and stakeholders by using the methods of organisational semiotics; in practice, the proposed framework improves the healthcare quality by providing appropriate medical attentions when and as needed. In this paper, both systems and functional architecture of the multi-agent system are elaborated with the use of wireless technologies such as RFID and wireless sensor networks. The future study will focus on the implementation of the proposed framework.