32 resultados para multi-column process
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper examines the evolution of knowledge management from the initial knowledge migration stage, through adaptation and creation, to the reverse knowledge migration stage in international joint ventures (IJVs). While many studies have analyzed these stages (mostly focusing on knowledge transfer), we investigated the path-dependent nature of knowledge flow in IJVs. The results from the empirical analysis based on a survey of 136 Korean parent companies of IJVs reveal that knowledge management in IJVs follows a sequential, multi-stage process, and that the knowledge transferred from parents to IJVs must first be adapted within its new environment before it reaches the creation stage. We also found that only created knowledge is transferred back to parents.
Resumo:
Well-resolved air–sea interactions are simulated in a new ocean mixed-layer, coupled configuration of the Met Office Unified Model (MetUM-GOML), comprising the MetUM coupled to the Multi-Column K Profile Parameterization ocean (MC-KPP). This is the first globally coupled system which provides a vertically resolved, high near-surface resolution ocean at comparable computational cost to running in atmosphere-only mode. As well as being computationally inexpensive, this modelling framework is adaptable– the independent MC-KPP columns can be applied selectively in space and time – and controllable – by using temperature and salinity corrections the model can be constrained to any ocean state. The framework provides a powerful research tool for process-based studies of the impact of air–sea interactions in the global climate system. MetUM simulations have been performed which separate the impact of introducing inter- annual variability in sea surface temperatures (SSTs) from the impact of having atmosphere–ocean feedbacks. The representation of key aspects of tropical and extratropical variability are used to assess the performance of these simulations. Coupling the MetUM to MC-KPP is shown, for example, to reduce tropical precipitation biases, improve the propagation of, and spectral power associated with, the Madden–Julian Oscillation and produce closer-to-observed patterns of springtime blocking activity over the Euro-Atlantic region.
Resumo:
This case study on the Sifnos island, Greece, assesses the main factors controlling vegetation succession following crop abandonment and describes the vegetation dynamics of maquis and phrygana formations in relation to alternative theories of secondary succession. Field survey data were collected and analysed at community as well as species level. The results show that vegetation succession on abandoned crop fields is determined by the combined effects of grazing intensity, soil and geological characteristics and time. The analysis determines the quantitative grazing thresholds that modify the successional pathway. Light grazing leads to dominance by maquis vegetation while overgrazing leads to phryganic vegetation. The proposed model shows that vegetation succession following crop abandonment is a complex multi-factor process where the final or the stable stage of the process is not predefined but depends on the factors affecting succession. An example of the use of succession models and disturbance thresholds as a policy assessment tool is presented by evaluating the likely vegetation impacts of the recent reform of the Common Agricultural Policy on Sifnos island over a 20-30-year time horizon. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The completion of the Single European Market was expected to create a large market that would enable firms to capture economies of scale that would in turn result in lower prices to European consumers. These benefits are only likely to be realised if consumers in the various countries of the EU wish to consume the same products and respond to similar marketing strategies (with respect to promotion, distribution etc). This study examines, through a model of yoghurt consumption, whether cultural differences continue to determine food-related behaviour in the EU. The model is derived from the marketing literature and views the consumption decision as the outcome of a multi-stage process in which yoghurt knowledge, attitudes to different yoghurt attributes (such as bio-bifidus, low-fat, organic) and overall attitude towards yoghurt as a product all feed into the frequency with which yoghurt is consumed at breakfast, as a snack and as a dessert. The model uses data collected from a consumer survey in I I European countries and is estimated using probit and ordinal probit methods. The results suggest that important cultural differences continue to determine food-related behaviour in the I I countries of the study. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Acrylamide is formed from reducing sugars and asparagine during the preparation of French fries. The commercial preparation of French fries is a multi-stage process involving the preparation of frozen, par-fried potato strips for distribution to catering outlets where they are finish fried. The initial blanching, treatment in glucose solution and par-frying steps are crucial since they determine the levels of precursors present at the beginning of the finish frying process. In order to minimize the quantities of acrylamide in cooked fries, it is important to understand the impact of each stage on the formation of acrylamide. Acrylamide, amino acids, sugars, moisture, fat and color were monitored at time intervals during the frying of potato strips which had been dipped in varying concentrations of glucose and fructose during a typical pretreatment. A mathematical model of the finish-frying was developed based on the fundamental chemical reaction pathways, incorporating moisture and temperature gradients in the fries. This showed the contribution of both glucose and fructose to the generation of acrylamide, and accurately predicted the acrylamide content of the final fries.
Resumo:
Adsorption of glycine on Ptf111g under UHV conditions and in different aqueous environments was studied by XPS (UHV and ambient pressure) and NEXAFS. Under UHV conditions, glycine adsorbs in its neutral molecular state up to about 0.15 ML. Further deposition leads to the formation of an additional zwitterionic species, which is in direct contact with the substrate surface, followed by the growth of multilayers, which also consist of zwitterions. The neutral surface species is most stable and decomposes at 360 K through a multi-step process which includes the formation of methylamine and carbon monoxide. When glycine and water are co-adsorbed in UHV at low temperatures (< 170 K) inter-layer diffusion is inhibited and the surface composition depends on the adsorption sequence. Water adsorbed on top of a glycine layer does not lead to significant changes in its chemical state. When glycine is adsorbed on top of a pre-adsorbed chemisorbed water layer or thick ice layer, however, it is found in its zwitterionic state, even at low coverage. No difference is seen in the chemical state of glycine when the layers are exposed to ambient water vapor pressure up to 0.2 Torr at temperatures above 300 K. Also the decomposition temperature stays the same, 360 K, irrespective of the water vapor pressure. Only the reaction path of the decomposition products is affected by ambient water vapor.
Resumo:
The technique of linear responsibility analysis is used for a retrospective case study of a private industrial development consisting of an engineering factory and offices. A multi-disciplinary professional practice was used to manage and design the project. The organizational structure adopted on the project is analysed using concepts from systems theory which are included in Walker's theoretical model of the structure of building project organizations (Walker, 1981). This model proposes that the process of buildings provision can be viewed as systems and sub-systems which are differentiated form each other at decision points. Further to this, the sub-systematic analysis of the relationship between the contributors gives a quantitative assessment of the efficiency of the organizational structure used. There was a high level of satisfaction with the completed project and this is reflected by the way in which the organization structure corresponded to the model's proposition. However, the project was subject to string environmental forces which the project organization was not capable of entirely overcoming.
Resumo:
In multi-tasking systems when it is not possible to guarantee completion of all activities by specified times, the scheduling problem is not straightforward. Examples of this situation in real-time programming include the occurrence of alarm conditions and the buffering of output to peripherals in on-line facilities. The latter case is studied here with the hope of indicating one solution to the general problem.
Resumo:
Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH) and by ~2055 in the Southern Hemisphere (SH), and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060) whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry) and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.
Resumo:
The control of fishing mortality via fishing effort remains fundamental to most fisheries management strategies even at the local community or co-management level. Decisions to support such strategies require knowledge of the underlying response of the catch to changes in effort. Even under adaptive management strategies, imprecise knowledge of the response is likely to help accelerate the adaptive learning process. Data and institutional capacity requirements to employ multi-species biomass dynamics and age-structured models invariably render their use impractical particularly in less developed regions of the world. Surplus production models fitted to catch and effort data aggregated across all species offer viable alternatives. The current paper seeks models of this type that best describe the multi-species catch–effort responses in floodplain-rivers, lakes and reservoirs and reef-based fisheries based upon among fishery comparisons, building on earlier work. Three alternative surplus production models were fitted to estimates of catch per unit area (CPUA) and fisher density for 258 fisheries in Africa, Asia and South America. In all cases examined, the best or equal best fitting model was the Fox type, explaining up to 90% of the variation in CPUA. For lake and reservoir fisheries in Africa and Asia, the Schaefer and an asymptotic model fitted equally well. The Fox model estimates of fisher density (fishers km−2) at maximum yield (iMY) for floodplain-rivers, African lakes and reservoirs and reef-based fisheries are 13.7 (95% CI [11.8, 16.4]); 27.8 (95% CI [17.5, 66.7]) and 643 (95% CI [459,1075]), respectively and compare well with earlier estimates. Corresponding estimates of maximum yield are also given. The significantly higher value of iMY for reef-based fisheries compared to estimates for rivers and lakes reflects the use of a different measure of fisher density based upon human population size estimates. The models predict that maximum yield is achieved at a higher fishing intensity in Asian lakes compared to those in Africa. This may reflect the common practice in Asia of stocking lakes to augment natural recruitment. Because of the equilibrium assumptions underlying the models, all the estimates of maximum yield and corresponding levels of effort should be treated with caution.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.
Resumo:
Building refurbishment is key to reducing the carbon footprint and improving comfort in the built environment. However, quantifying the real benefit of a facade change, which can bring advantages to owners (value), occupants (comfort) and the society (sustainability), is not a simple task. At a building physics level, the changes in kWh per m2 of heating / cooling load can be readily quantified. However, there are many subtle layers of operation and mainte-nance below these headline figures which determine how sustainable a building is in reality, such as for example quality of life factors. This paper considers the range of approached taken by a fa/e refurbishment consortium to assess refurbishment solutions for multi-storey, multi-occupancy buildings and how to critically evaluate them. Each of the applued tools spans one or more of the three building parameters of people, product and process. 'De-cision making' analytical network process and parametric building analysis tools are described and their potential impact on the building refurbishment process evaluated.
Resumo:
The purpose of this paper is to present two multi-criteria decision-making models, including an Analytic Hierarchy Process (AHP) model and an Analytic Network Process (ANP) model for the assessment of deconstruction plans and to make a comparison between the two models with an experimental case study. Deconstruction planning is under pressure to reduce operation costs, adverse environmental impacts and duration, in the meanwhile to improve productivity and safety in accordance with structure characteristics, site conditions and past experiences. To achieve these targets in deconstruction projects, there is an impending need to develop a formal procedure for contractors to select a most appropriate deconstruction plan. Because numbers of factors influence the selection of deconstruction techniques, engineers definitely need effective tools to conduct the selection process. In this regard, multi-criteria decision-making methods such as AHP have been adopted to effectively support deconstruction technique selection in previous researches. in which it has been proved that AHP method can help decision-makers to make informed decisions on deconstruction technique selection based on a sound technical framework. In this paper, the authors present the application and comparison of two decision-making models including the AHP model and the ANP model for deconstruction plan assessment. The paper concludes that both AHP and ANP are viable and capable tools for deconstruction plan assessment under the same set of evaluation criteria. However, although the ANP can measure relationship among selection criteria and their sub-criteria, which is normally ignored in the AHP, the authors also indicate that whether the ANP model can provide a more accurate result should be examined in further research.