43 resultados para multi-attribute decision making
em CentAUR: Central Archive University of Reading - UK
Resumo:
The purpose of this paper is to present two multi-criteria decision-making models, including an Analytic Hierarchy Process (AHP) model and an Analytic Network Process (ANP) model for the assessment of deconstruction plans and to make a comparison between the two models with an experimental case study. Deconstruction planning is under pressure to reduce operation costs, adverse environmental impacts and duration, in the meanwhile to improve productivity and safety in accordance with structure characteristics, site conditions and past experiences. To achieve these targets in deconstruction projects, there is an impending need to develop a formal procedure for contractors to select a most appropriate deconstruction plan. Because numbers of factors influence the selection of deconstruction techniques, engineers definitely need effective tools to conduct the selection process. In this regard, multi-criteria decision-making methods such as AHP have been adopted to effectively support deconstruction technique selection in previous researches. in which it has been proved that AHP method can help decision-makers to make informed decisions on deconstruction technique selection based on a sound technical framework. In this paper, the authors present the application and comparison of two decision-making models including the AHP model and the ANP model for deconstruction plan assessment. The paper concludes that both AHP and ANP are viable and capable tools for deconstruction plan assessment under the same set of evaluation criteria. However, although the ANP can measure relationship among selection criteria and their sub-criteria, which is normally ignored in the AHP, the authors also indicate that whether the ANP model can provide a more accurate result should be examined in further research.
Resumo:
The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.
Resumo:
Currently researchers in the field of personalized recommendations bear little consideration on users' interest differences in resource attributes although resource attribute is usually one of the most important factors in determining user preferences. To solve this problem, the paper builds an evaluation model of user interest based on resource multi-attributes, proposes a modified Pearson-Compatibility multi-attribute group decision-making algorithm, and introduces an algorithm to solve the recommendation problem of k-neighbor similar users. Considering the characteristics of collaborative filtering recommendation, the paper addresses the issues on the preference differences of similar users, incomplete values, and advanced converge of the algorithm. Thus the paper realizes multi-attribute collaborative filtering. Finally, the effectiveness of the algorithm is proved by an experiment of collaborative recommendation among multi-users based on virtual environment. The experimental results show that the algorithm has a high accuracy on predicting target users' attribute preferences and has a strong anti-interference ability on deviation and incomplete values.
Resumo:
The aim of a phase H clinical trial is to decide whether or not to develop an experimental therapy further through phase III clinical evaluation. In this paper, we present a Bayesian approach to the phase H trial, although we assume that subsequent phase III clinical trials will hat,e standard frequentist analyses. The decision whether to conduct the phase III trial is based on the posterior predictive probability of a significant result being obtained. This fusion of Bayesian and frequentist techniques accepts the current paradigm for expressing objective evidence of therapeutic value, while optimizing the form of the phase II investigation that leads to it. By using prior information, we can assess whether a phase II study is needed at all, and how much or what sort of evidence is required. The proposed approach is illustrated by the design of a phase II clinical trial of a multi-drug resistance modulator used in combination with standard chemotherapy in the treatment of metastatic breast cancer. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.
Resumo:
Decision strategies in multi-attribute Choice Experiments are investigated using eye-tracking. The visual attention towards, and attendance of, attributes is examined. Stated attendance is found to diverge substantively from visual attendance of attributes. However, stated and visual attendance are shown to be informative, non-overlapping sources of information about respondent utility functions when incorporated into model estimation. Eye-tracking also reveals systematic nonattendance of attributes only by a minority of respondents. Most respondents visually attend most attributes most of the time. We find no compelling evidence that the level of attention is related to respondent certainty, or that higher or lower value attributes receive more or less attention
Resumo:
Many different individuals, who have their own expertise and criteria for decision making, are involved in making decisions on construction projects. Decision-making processes are thus significantly affected by communication, in which a dynamic performance of human intentions leads to unpredictable outcomes. In order to theorise the decision making processes including communication, it is argued here that the decision making processes resemble evolutionary dynamics in terms of both selection and mutation, which can be expressed by the replicator-mutator equation. To support this argument, a mathematical model of decision making has been made from an analogy with evolutionary dynamics, in which there are three variables: initial support rate, business hierarchy, and power of persuasion. On the other hand, a survey of patterns in decision making in construction projects has also been performed through self-administered mail questionnaire to construction practitioners. Consequently, comparison between the numerical analysis of mathematical model and the statistical analysis of empirical data has shown a significant potential of the replicator-mutator equation as a tool to study dynamic properties of intentions in communication.
Resumo:
The games-against-nature approach to the analysis of uncertainty in decision-making relies on the assumption that the behaviour of a decision-maker can be explained by concepts such as maximin, minimax regret, or a similarly defined criterion. In reality, however, these criteria represent a spectrum and, the actual behaviour of a decision-maker is most likely to embody a mixture of such idealisations. This paper proposes that in game-theoretic approach to decision-making under uncertainty, a more realistic representation of a decision-maker's behaviour can be achieved by synthesising games-against-nature with goal programming into a single framework. The proposed formulation is illustrated by using a well-known example from the literature on mathematical programming models for agricultural-decision-making. (c) 2005 Elsevier Inc. All rights reserved.