10 resultados para motion perception

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

When human observers are exposed to even slight motion signals followed by brief visual transients—stimuli containing no detectable coherent motion signals—they perceive large and salient illusory jumps. This novel effect, which we call “high phi”, challenges well-entrenched assumptions about the perception of motion, namely the minimal-motion principle and the breakdown of coherent motion perception with steps above an upper limit. Our experiments with transients such as texture randomization or contrast reversal show that the magnitude of the jump depends on spatial frequency and transient duration, but not on the speed of the inducing motion signals, and the direction of the jump depends on the duration of the inducer. Jump magnitude is robust across jump directions and different types of transient. In addition, when a texture is actually displaced by a large step beyond dmax, a breakdown of coherent motion perception is expected, but in the presence of an inducer observers again perceive coherent displacements at or just above dmax. In sum, across a large variety of stimuli, we find that when incoherent motion noise is preceded by a small bias, instead of perceiving little or no motion, as suggested by the minimal-motion principle, observers perceive jumps whose amplitude closely follows their own dmax limits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A strong body of work has explored the interaction between visual perception and language comprehension; for example, recent studies exploring predictions from embodied cognition have focused particularly on the common representation of sensory—motor and semantic information. Motivated by this background, we provide a set of norms for the axis and direction of motion implied in 299 English verbs, collected from approximately 100 native speakers of British English. Until now, there have been no freely available norms of this kind for a large set of verbs that can be used in any area of language research investigating the semantic representation of motion. We have used these norms to investigate the interaction between language comprehension and low-level visual processes involved in motion perception, validating the norming procedure’s ability to capture the motion content of individual verbs. Supplemental materials for this study may be downloaded from brm.psychonomic-journals.org/content/supplemental.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent theories propose that semantic representation and sensorimotor processing have a common substrate via simulation. We tested the prediction that comprehension interacts with perception, using a standard psychophysics methodology.While passively listening to verbs that referred to upward or downward motion, and to control verbs that did not refer to motion, 20 subjects performed a motion-detection task, indicating whether or not they saw motion in visual stimuli containing threshold levels of coherent vertical motion. A signal detection analysis revealed that when verbs were directionally incongruent with the motion signal, perceptual sensitivity was impaired. Word comprehension also affected decision criteria and reaction times, but in different ways. The results are discussed with reference to existing explanations of embodied processing and the potential of psychophysical methods for assessing interactions between language and perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Do we view the world differently if it is described to us in figurative rather than literal terms? An answer to this question would reveal something about both the conceptual representation of figurative language and the scope of top-down influences oil scene perception. Previous work has shown that participants will look longer at a path region of a picture when it is described with a type of figurative language called fictive motion (The road goes through the desert) rather than without (The road is in the desert). The current experiment provided evidence that such fictive motion descriptions affect eye movements by evoking mental representations of motion. If participants heard contextual information that would hinder actual motion, it influenced how they viewed a picture when it was described with fictive motion. Inspection times and eye movements scanning along the path increased during fictive motion descriptions when the terrain was first described as difficult (The desert is hilly) as compared to easy (The desert is flat); there were no such effects for descriptions without fictive motion. It is argued that fictive motion evokes a mental simulation of motion that is immediately integrated with visual processing, and hence figurative language can have a distinct effect on perception. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static movement aftereffects (MAEs) were measured after adaptation to vertical square-wave luminance gratings drifting horizontally within a central window in a surrounding stationary vertical grating. The relationship between the stationary test grating and the surround was manipulated by varying the alignment of the stationary stripes in the window and those in the surround, and the type of outline separating the window and the surround [no outline, black outline (invisible on black stripes), and red outline (visible throughout its length)]. Offsetting the stripes in the window significantly increased both the duration and ratings of the strength of MAEs. Manipulating the outline had no significant effect on either measure of MAE strength. In a second experiment, in which the stationary test fields alone were presented, participants judged how segregated the test field appeared from its surround. In contrast to the MAE measures, outline as well as offset contributed to judged segregation. In a third experiment, in which test-stripe offset wits systematically manipulated, segregation ratings rose with offset. However, MAE strength was greater at medium than at either small or large (180 degrees phase shift) offsets. The effects of these manipulations on the MAE are interpreted in terms of a spatial mechanism which integrates motion signals along collinear contours of the test field and surround, and so causes a reduction of motion contrast at the edges of the test field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing number of neuroscience experiments are using virtual reality to provide a more immersive and less artificial experimental environment. This is particularly useful to navigation and three-dimensional scene perception experiments. Such experiments require accurate real-time tracking of the observer's head in order to render the virtual scene. Here, we present data on the accuracy of a commonly used six degrees of freedom tracker (Intersense IS900) when it is moved in ways typical of virtual reality applications. We compared the reported location of the tracker with its location computed by an optical tracking method. When the tracker was stationary, the root mean square error in spatial accuracy was 0.64 mm. However, we found that errors increased over ten-fold (up to 17 mm) when the tracker moved at speeds common in virtual reality applications. We demonstrate that the errors we report here are predominantly due to inaccuracies of the IS900 system rather than the optical tracking against which it was compared. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined whether it is possible to identify the emotional content of behaviour from point-light displays where pairs of actors are engaged in interpersonal communication. These actors displayed a series of emotions, which included sadness, anger, joy, disgust, fear, and romantic love. In experiment 1, subjects viewed brief clips of these point-light displays presented the right way up and upside down. In experiment 2, the importance of the interaction between the two figures in the recognition of emotion was examined. Subjects were shown upright versions of (i) the original pairs (dyads), (ii) a single actor (monad), and (iii) a dyad comprising a single actor and his/her mirror image (reflected dyad). In each experiment, the subjects rated the emotional content of the displays by moving a slider along a horizontal scale. All of the emotions received a rating for every clip. In experiment 1, when the displays were upright, the correct emotions were identified in each case except disgust; but, when the displays were inverted, performance was significantly diminished for some ernotions. In experiment 2, the recognition of love and joy was impaired by the absence of the acting partner, and the recognition of sadness, joy, and fear was impaired in the non-veridical (mirror image) displays. These findings both support and extend previous research by showing that biological motion is sufficient for the perception of emotion, although inversion affects performance. Moreover, emotion perception from biological motion can be affected by the veridical or non-veridical social context within the displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embodied theories of cognition propose that neural substrates used in experiencing the referent of a word, for example perceiving upward motion, should be engaged in weaker form when that word, for example ‘rise’, is comprehended. Motivated by the finding that the perception of irrelevant background motion at near-threshold, but not supra-threshold, levels interferes with task execution, we assessed whether interference from near-threshold background motion was modulated by its congruence with the meaning of words (semantic content) when participants completed a lexical decision task (deciding if a string of letters is a real word or not). Reaction times for motion words, such as ‘rise’ or ‘fall’, were slower when the direction of visual motion and the ‘motion’ of the word were incongruent — but only when the visual motion was at nearthreshold levels. When motion was supra-threshold, the distribution of error rates, not reaction times, implicated low-level motion processing in the semantic processing of motion words. As the perception of near-threshold signals is not likely to be influenced by strategies, our results support a close contact between semantic information and perceptual systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For people with motion impairments, access to and independent control of a computer can be essential. Symptoms such as tremor and spasm, however, can make the typical keyboard and mouse arrangement for computer interaction difficult or even impossible to use. This paper describes three approaches to improving computer input effectivness for people with motion impairments. The three approaches are: (1) to increase the number of interaction channels, (2) to enhance commonly existing interaction channels, and (3) to make more effective use of all the available information in an existing input channel. Experiments in multimodal input, haptic feedback, user modelling, and cursor control are discussed in the context of the three approaches. A haptically enhanced keyboard emulator with perceptive capability is proposed, combining approaches in a way that improves computer access for motion impaired users.