44 resultados para monosodium glutamate
em CentAUR: Central Archive University of Reading - UK
Resumo:
Previous research on the repeat exposure to a novel flavour combined with monosodium glutamate (MSG) has shown an increase in liking and consumption for the particular flavour. The aim of the current work was to investigate whether this could also be observed in the case of older people, since they are most affected by undernutrition in the developed world and ways to increase consumption of food are of significant importance for this particular age group. For this study, 40 older adults (age 65-88) repeatedly consumed potato soup with two novel flavours (lemongrass and cumin) which were either with or without a high level of MSG (5%w/w). A randomized single blind within-subject design was implemented, where each participant was exposed to both soup flavours three times over 6 days, with one of the soup flavours containing MSG. After three repeat exposures, consumption increased significantly for the soups where the flavours had contained MSG during the repeated exposure (mean weight consumed increased from 123 to 164 g, p=0.017), implying that glutamate conditioned for increased wanting and consumption, despite the fact that the liking for the soup had not increased.
Resumo:
BACKGROUND: Umami taste in foods is elicited predominantly by the presence of glutamic acid and 5’-ribonucleotides, which act synergistically. This study aimed to use natural ingredients to maximise umami taste of a meat formulation and determine effects on liking of older consumers. METHODS: Cooked meat products with added natural ingredients (yeast extract, mycoscent, shiitake extract, tomato puree, soy sauce and soy bean paste) or monosodium glutamate (MSG) were prepared and compared to a control sample analytically (umami compounds), sensorially (sensory profile) and hedonically (liking by younger and older volunteers). Taste detection thresholds of sodium chloride and MSG of volunteers were collected. RESULTS: Four of the seven cooked meat products developed had a significantly higher content of umami-contributing compounds compared to the control. All products, except those containing MSG or tomato puree, were scored (by trained sensory panel) perceptually significantly higher in umami and / or salty taste compared to the control. Consumer tests showed a correlation of liking by the older cohort with perceived saltiness (ρ=0.76). CONCLUSION: The addition of natural umami-containing ingredients during the cooking of meat can provide enhanced umami and salty taste characteristics, this can lead to increased liking by some consumers, particularly those with raised taste detection thresholds.
Resumo:
-Aminobutyric acid type A (GABAA) receptors, a family of Cl-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for -aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated byGABAA receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABAA receptor activation correlated with an increase in basal intraterminal [Ca2]i. Interestingly, this activation of GABAA receptors resulted in a reduction of subsequent depolarization-evoked Ca2 influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABAA receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca2 with Ba2, or Ca2/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABAA receptors. Application of selective antagonists of voltage-gated Ca2 channels (VGCCs) revealed that the GABAA receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABAA receptors and L- or R-type VGCCs is mediated by Ca2/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.
Resumo:
Ferritins are nearly ubiquitous iron storage proteins playing a fundamental role in iron metabolism. They are composed of 24 subunits forming a spherical protein shell encompassing a central iron storage cavity. The iron storage mechanism involves the initial binding and subsequent O-2-dependent oxidation of two Fe2+ ions located at sites A and B within the highly conserved dinuclear "ferroxidase center" in individual subunits. Unlike animal ferritins and the heme-containing bacterioferritins, the Escherichia coli ferritin possesses an additional iron-binding site (site C) located on the inner surface of the protein shell close to the ferroxidase center. We report the structures of five E. coli ferritin variants and their Fe3+ and Zn2+ (a redox-stable alternative for Fe2+) derivatives. Single carboxyl ligand replacements in sites A, B, and C gave unique effects on metal binding, which explain the observed changes in Fe2+ oxidation rates. Binding of Fe2+ at both A and B sites is clearly essential for rapid Fe2+ oxidation, and the linking of Fe-B(2+) to Fe-C(2+) enables the oxidation of three Fe2+ ions. The transient binding of Fe2+ at one of three newly observed Zn2+ sites may allow the oxidation of four Fe2+ by one dioxygen molecule.
Resumo:
Three new polynuclear copper(II) complexes of singly deprotonated L-glutamic acid (L-glu), {[Cu(bipy)(2)][Cu(bipy)(L-glu)H2O](2)(BF4)(4)center dot(H2O)(3)}(n) (1), {[Cu(bipy)(L-glu)H2O][Cu(bipy)(L-glu)(ClO4)]( ClO4)center dot(H2O)(2)}(n) ((2)) and [Cu(phen)(L-glu)H2O](2)(NO3)(2)center dot(H2O)(4) (3) (bipy = 2,2-bipyridine, phen = 1,10-phenanthroline), were synthesized in acidic pH (ca. 2.5) and characterized structurally. In all the complexes, L-glutamic acid acts as a bidentate chelating ligand, leaving the protonated carboxylic acid free. Both in 1 and 2, two different types of species [Cu(bipy)(2)](BF4)(2) and [Cu(bipy)(L-glu)H2O] BF4 for 1 and [Cu(bipy)(L-glu)H2O]ClO4 and [Cu(bipy)(L-glu)(ClO4)] for 2 coexist in the solid state. In complex 1, the [C( bipy)(L-glu)H2O]+ units are joined together by syn-anti carboxylate bridges to form an enantiopure (M) helical chain and the [Cu(bipy)(2)](2+) presents a very rare example of the four-coordinate distorted tetrahedral geometry of Cu(II). In complex 2, the [Cu(bipy)(L gluClO(4))] units are joined together by weakly coordinating perchlorate ions to form a 1D polymeric chain while the [Cu(bipy)(L-glu)H2O]+ units remain as mononuclear species. The different coordinating ability of the two counter anions along with their involvement in the H-bonding network seems likely to be responsible for the difference in the final polymeric structures in the two compounds. Variable-temperature (2-300 K) magnetic susceptibility measurements show negligible coupling for both the complexes. The structure of 3 consists of two independent monomeric [Cu(phen)(L-glu)H2O]+ cations, two nitrate anions and four water molecules. The copper atom occupies a five-coordinate square pyramidal environment with a water molecule in the axial position.
Resumo:
The morphology in the solid state of a series of triblock copolymers comprising a poly(ethylene glycol) (PEG) midblock and symmetric poly(gamma-benzyl-L-glutamate) (PBLG) end blocks has been studied using X-ray scattering and microscopy techniques. Transmission electron microscopy (TEM) on samples selectively stained with uranyl acetate provided clear assignment of morphologies for as-cast and annealed samples. The thickness of both PEG and PBLG domains was in good agreement with calculations based on the conformations of the respective chains, allowing for the crystal or amorphous state of PEG and the a-helical or P-sheet structure of the PBLG. Atomic force microscopy provided complementary information on surface morphology for several samples that was in good agreement with the structure observed by TEM. A morphology diagram was constructed. Cylindrical structures were observed for ordered samples with low f(PBLG), whereas at higher f(PLBG) there was evidence for broken lamellar and "hockey puck" nanostructures. Regular lamellae were observed for intermediate compositions.
Resumo:
Glutamate excitotoxicity is implicated in the aetiology of amyotrophic lateral sclerosis (ALS) with impairment of glutamate transport into astrocytes a possible cause of glutamate-induced injury to motor neurons. It is possible that mutations of Cu/Zn superoxide dismutase (SOD1), responsible for about 20% of familial ALS, down-regulates glutamate transporters via oxidative stress. We transfected primary mouse astrocytes to investigate the effect of the FALS-linked mutant hSOD1(G93A) and wild-type SOD1 (hSOD1(wt)) on the glutamate uptake system. Using western blotting, immunocytochemistry and RT-PCR it was shown that expression of either hSOD1(G93A) or hSOD1(wt) in astrocytes produced down-regulation of the levels of a glutamate transporter GLT-1, without alterations in its mRNA level. hSOD1(G93A) or hSOD1(wt) expression caused a decrease of the monomeric form of GLT-1 without increasing oxidative multimers of GLT-1. The effects were selective to GLT-1, since another glutamate transporter GLAST protein and mRNA levels were not altered. Reflecting the decrease in GLT-1 protein, [H-3]D-aspartate uptake was reduced in cultures expressing hSOD1(G93A) or hSOD1(wt). The hSOD1-induced decline in GLT-1 protein and [H-3]D-aspartate uptake was not blocked by the antioxidant Trolox nor potentiated by antioxidant depletion using catalase and glutathione peroxidase inhibitors. Measurement of 2',7'-dichlorofluorescein (DCF)-induced fluorescence revealed that expression of hSOD1(G93A) or hSOD1(wt) in astrocytes does not lead to detectable increase of intracellular reactive oxygen species. This study suggests that levels of GLT-1 protein in astrocytes are reduced rapidly by overexpression of hSOD1, and is due to a property shared between the wild-type and G93A mutant form, but does not involve the production of intracellular oxidative stress.
Resumo:
The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.
Resumo:
The glutamate decarboxylase (GAD) system is important for the acid resistance of Listeria monocytogenes. We previously showed that under acidic conditions, glutamate (Glt)/γ-aminobutyrate (GABA) antiport is impaired in minimal media but not in rich ones, like brain heart infusion. Here we demonstrate that this behavior is more complex and it is subject to strain and medium variation. Despite the impaired Glt/GABA antiport, cells accumulate intracellular GABA (GABA(i)) as a standard response against acid in any medium, and this occurs in all strains tested. Since these systems can occur independently of one another, we refer to them as the extracellular (GAD(e)) and intracellular (GAD(i)) systems. We show here that GAD(i) contributes to acid resistance since in a ΔgadD1D2 mutant, reduced GABA(i) accumulation coincided with a 3.2-log-unit reduction in survival at pH 3.0 compared to that of wild-type strain LO28. Among 20 different strains, the GAD(i) system was found to remove 23.11% ± 18.87% of the protons removed by the overall GAD system. Furthermore, the GAD(i) system is activated at milder pH values (4.5 to 5.0) than the GAD(e) system (pH 4.0 to 4.5), suggesting that GAD(i) is the more responsive of the two and the first line of defense against acid. Through functional genomics, we found a major role for GadD2 in the function of GAD(i), while that of GadD1 was minor. Furthermore, the transcription of the gad genes in three common reference strains (10403S, LO28, and EGD-e) during an acid challenge correlated well with their relative acid sensitivity. No transcriptional upregulation of the gadT2D2 operon, which is the most important component of the GAD system, was observed, while gadD3 transcription was the highest among all gad genes in all strains. In this study, we present a revised model for the function of the GAD system and highlight the important role of GAD(i) in the acid resistance of L. monocytogenes.
Resumo:
Glutamate plays a central role in a wide range of metabolic processes in bacterial cells. This review focuses on the involvement of glutamate in bacterial stress responses. In particular it reviews the role of glutamate metabolism in response against acid stress and other stresses. The glutamate decarboxylase (GAD) system has been implicated in acid tolerance in several bacterial genera. This system facilitates intracellular pH homeostasis by consuming protons in a decarboxylation reaction that produces γ-aminobutyrate (GABA) from glutamate. An antiporter system is usually present to couple the uptake of glutamate to the efflux of GABA. Recent insights into the functioning of this system will be discussed. Finally the intracellular fate of GABA will also be discussed. Many bacteria are capable of metabolising GABA to succinate via the GABA shunt pathway. The role and regulation of this pathway will be addressed in the review. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Resumo:
Sustained hypoxia alters the expression of numerous proteins and predisposes individuals to Alzheimer's disease (AD). We have previously shown that hypoxia in vitro alters Ca2+ homeostasis in astrocytes and promotes increased production of amyloid beta peptides (Abeta) of AD. Indeed, alteration of Ca2+ homeostasis requires amyloid formation. Here, we show that electrogenic glutamate uptake by astrocytes is suppressed by hypoxia (1% O2, 24h) in a manner that is independent of amyloid beta peptide formation. Thus, hypoxic suppression of glutamate uptake and expression levels of glutamate transporter proteins EAAT1 and EAAT2 were not mimicked by exogenous application of amyloid beta peptide, or by prevention of endogenous amyloid peptide formation (using inhibitors of either beta or gamma secretase). Thus, dysfunction in glutamate homeostasis in hypoxic conditions is independent of Abeta production, but will likely contribute to neuronal damage and death associated with AD following hypoxic events.
Resumo:
Glutamate uptake by astrocytes is fundamentally important in the regulation of CNS function. Disruption of uptake can lead to excitotoxicity and is implicated in various neurodegenerative processes as well as a consequence of hypoxic/ischemic events. Here, we investigate the effect of hypoxia on activity and expression of the key glutamate transporters excitatory amino acid transporter 1 (EAAT1) [GLAST (glutamate-aspartate transporter)] and EAAT2 [GLT-1 (glutamate transporter 1)]. Electrogenic, Na+-dependent glutamate uptake was monitored via whole-cell patch-clamp recordings from cortical astrocytes. Under hypoxic conditions (2.5 and 1% O2 exposure for 24 h), glutamate uptake was significantly reduced, and pharmacological separation of uptake transporter subtypes suggested that the EAAT2 subtype was preferentially reduced relative to the EAAT1. This suppression was confirmed at the level of EAAT protein expression (via Western blots) and mRNA levels (via real-time PCR). These effects of hypoxia to inhibit glutamate uptake current and EAAT protein levels were not replicated by desferrioxamine, cobalt, FG0041, or FG4496, agents known to mimic effects of hypoxia mediated via the transcriptional regulator, hypoxia-inducible factor (HIF). Furthermore, the effects of hypoxia were not prevented by topotecan, which prevents HIF accumulation. In stark contrast, inhibition of nuclear factor-kappaB (NF-kappaB) with SN50 fully prevented the effects of hypoxia on glutamate uptake and EAAT expression. Our results indicate that prolonged hypoxia can suppress glutamate uptake in astrocytes and that this effect requires activation of NF-kappaB but not of HIF. Suppression of glutamate uptake via this mechanism may be an important contributory factor in hypoxic/ischemic triggered glutamate excitotoxicity.
Resumo:
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
Resumo:
Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The calibre of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. In this study we quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient (Dmean) in neurites from 0.12 ± 0.05 µm2/s to 0.61 ± 0.03 µm2/s after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from 10.9 ± 1.9 to 15 ± 4.9 µm/s, whereas a velocity increase from 9 ± 1.3 to 14 ± 3 µm/s was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons.