24 resultados para molecule reactions

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate coefficients for the reaction between atomic chlorine and a number of naturally occurring species have been measured at ambient temperature and atmospheric pressure using the relative rate technique. The values obtained were (4.0 ± 0.8) × 10-10, (2.1 ± 0.5) × 10-10, (3.2 ± 0.5) × 10-10, and (4.9 ± 0.5) × 10-10 cm3 molecule-1 s-1, for reactions with isoprene, methyl vinyl ketone, methacrolein and δ3-carene, respectively. The value obtained for isoprene compares favourably with previously reported values. No values have been reported to date for the rate constants of the other reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atmospheric chemistry of several gases used in industrial applications, C4F9OC2H5 (HFE-7200), C4F9OCH3 (HFE-7100), C3F7OCH3 (HFE-7000) and C3F7CH2OH, has been studied. The discharge flow technique coupled with mass-spectrometric detection has been used to study the kinetics of their reactions with OH radicals as a function of temperature. The infrared spectra of the compounds have also been measured. The following Arrhenius expressions for the reactions were determined (in units of cm3 molecule-1 s-1): k(OH + HFE-7200) = (6.9+2.3-1.7) × 10-11 exp(-(2030 ± 190)/T); k(OH + HFE-7100) = (2.8+3.2-1.5) × 10-11 exp(-(2200 ± 490)/T); k(OH + HFE-7000) = (2.0+1.2-0.7) × 10-11 exp(-(2130 ± 290)/T); and k(OH + C3F7CH2OH) = (1.4+0.3-0.2) × 10-11 exp(-(1460 ± 120)/T). From the infrared spectra, radiative forcing efficiencies were determined and compared with earlier estimates in the literature. These were combined with the kinetic data to estimate 100-year time horizon global warming potentials relative to CO2 of 69, 337, 499 and 36 for HFE-7200, HFE-7100, HFE-7000 and CF3CF2CF2CH2OH, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved studies of the reaction of silylene, SiH2, with N-2 have been attempted at 296, 417, and 484 K, using laser flash photolysis to generate and monitor SiH2. No conclusive evidence for reaction could be found even with pressures of N-2 of 500 Torr. This enables us to set upper limits of ca. 3 x 10(-15) cm(3) molecule(-1) s(-1) for the second-order rate constants. A lower limit for the activation energy, E-a, of ca. 47 kJ mol(-1) is also derived. Ab initio calculations at the G3 level indicate that the only SiH2N2 species of lower energy than the separated reactants is the H2Si...N-2 donor-acceptor (ylid) species with a relative enthalpy of -26 kJ mol(-1), insufficient for observation of reaction under the experimental conditions. Ten bound species on the SiH2N2 surface were found and their energies calculated as well as those of the potential dissociation products: HSiN + NH((3)Sigma(-)) and HNSi + NH((3)Sigma(-)). Additionally two of the transition states involving cyclic-SiH2N2 (siladiazirine) were explored. It appears that siladiazirine is neither thermodynamically nor kinetically stable. The findings indicate that Si-N-d bonds (where N-d is double-bonded nitrogen) are not particularly strong. An unexpected cyclic intermediate was found in the isomerization of silaisocyanamide to silacyanamide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O-.)CH2CH3 CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O-.)CH2CH3 + O-2 -> CH3C(O)C2H5 + HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O. -> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O. + O-2 -> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k(7)/k(6) = 5.4 x 1026 exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k(9)/k(8) = 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The currently accepted mechanism of trioxane antimalarial action involves generation of free radicals within or near susceptible sites probably arising from the production of distonic radical anions. An alternative mechanistic proposal involving the ionic scission of the peroxide group and consequent generation of a carbocation at C-4 has been suggested to account for antimalarial activity. We have investigated this latter mechanism using DFT (B3LYP/6-31+G* level) and established the preferred Lewis acid protonation sites (artemisinin O5a >> O4a approximate to O3a > O2a > O1a; arteether O4a >= O3a > O5b >> O2a > O1a; Figure 3) and the consequent decomposition pathways and hydrolysis sites. In neither molecule is protonation likely to occur on the peroxide bond O1-O2 and therefore lead to scission. Therefore, the alternative radical pathway remains the likeliest explanation for antimalarial action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absorption cross-sections of Cl2O6 and Cl2O4 have been obtained using a fast flow reactor with a diode array spectrometer (DAS) detection system. The absorption cross-sections at the wavelengths of maximum absorption (lambda(max)) determined in this study are those of Cl2O6: (1.47 +/- 0.15) x 10(-17) cm(2) molecule(-1), at lambda(max) = 276 nm and T = 298 K; and Cl2O4: (9.0 +/- 2.0) x 10(-19) cm(2) molecule(-1), at lambda(max) = 234 nm and T = 298 K. Errors quoted are two standard deviations together with estimates of the systematic error. The shapes of the absorption spectra were obtained over the wavelength range 200-450 nm for Cl2O6 and 200-350 nm for Cl2O4, and were normalized to the absolute cross-sections obtained at lambda(max) for each oxide, and are presented at 1 nm intervals. These data are discussed in relation to previous measurements. The reaction of O with OCIO has been investigated with the objective of observing transient spectroscopic absorptions. A transient absorption was seen, and the possibility is explored of identifying the species with the elusive sym-ClO3 or ClO4, both of which have been characterized in matrices, but not in the gas-phase. The photolysis of OCIO was also re-examined, with emphasis being placed on the products of reaction. UV absorptions attributable to one of the isomers of the ClO dimer, chloryl chloride (ClClO2) were observed; some Cl2O4 was also found at long photolysis times, when much of the ClClO2 had itself been photolysed. We suggest that reports of Cl2O6 formation in previous studies could be a consequence of a mistaken identification. At low temperatures, the photolysis of OCIO leads to the formation of Cl2O3 as a result of the addition of the ClO primary product to OCIO. ClClO2 also appears to be one product of the reaction between O-3 and OCIO, especially when the reaction occurs under explosive conditions. We studied the kinetics of the non-explosive process using a stopped-flow technique, and suggest a value for the room-temperature rate coefficient of (4.6 +/- 0.9) x 10(-19) cm(3) molecule(-1) s(-1) (limit quoted is 2sigma random errors). The photochemical and thermal decomposition of Cl2O6 is described in this paper. For photolysis at k = 254 nm, the removal of Cl2O6 is not accompanied by the build up of any other strong absorber. The implications of the results are either that the photolysis of Cl2O6 produces Cl-2 directly, or that the initial photofragments are converted rapidly to Cl-2. In the thermal decomposition of Cl2O6, Cl2O4 was shown to be a product of reaction, although not necessarily the major one. The kinetics of decomposition were investigated using the stopped-flow technique. At relatively high [OCIO] present in the system, the decay kinetics obeyed a first-order law, with a limiting first-order rate coefficient of 0.002 s(-1). (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of the photodimerisation reactions of the 2- and 4-β-halogeno-derivatives of trans-cinnamic acid (where the halogen is fluorine, chlorine or bromine) have been investigated by infrared microspectroscopy. It is found that none of the reactions proceed to 100% yield. This is in line with a reaction mechanism developed by Wernick and his co-workers that postulates the formation of isolated monomers within the solid, which cannot react. β-4-Bromo and β-4-chloro-trans-cinnamic acids show approximately first order kinetics, although in both cases the reaction accelerates somewhat as it proceeds. First order kinetics is explained in terms of a reaction between one excited- and one ground-state monomer molecule, while the acceleration of the reaction implies that it is promoted as defects are formed within the crystal. By contrast β-2-chloro-trans-cinnamic acid shows a strongly accelerating reaction which models closely to the contracting cube equation. β-2-Fluoro- and β-4-fluoro-trans-cinnamic acids show a close match to first order kinetics. The 4-fluoro-derivative, however, shows a reaction that proceeds via a structural intermediate. The difference in behaviour between the 2-fluoro- and 4-fluoro-derivative may be due to different C–HF hydrogen bonds observed within these single-crystalline starting materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure activity relationships (SARs) are presented for the gas-phase reactions of RO2 with HO2, and the self- and cross-reactions of RO2. For RO2+HO2 the SAR is based upon a correlation between the logarithm of the measured rate coefficient and a calculated ionisation potential for the molecule R-CH=CH2, R being the same group in both the radical and molecular analogue. The correlation observed is strong and only for one RO2 species does the measured rate coefficient deviate by more than a factor of two from the linear least-squares regression line. For the self- and cross-reactions of RO2 radicals, the SAR is based upon a correlation between the logarithm of the measured rate coefficient and the calculated electrostatic potential (ESP) at the equivalent carbon atom in the RH molecule to which oxygen is attached in RO2, again R being the same group in the molecule and the radical. For cases where R is a simple alkyl-group, a strong linear correlation observed. For RO2 radicals which contain lone pair-bearing substituents and for which the calculated ESP<-0.05 self-reaction rate coefficients appear to be insensitive to the value of the ESP. For RO2 of this type with ESP>-0.05 a linear relationship between log k and the ESP is again observed. Using the relationships, 84 out of the 85 rate coefficients used to develop the SARs are predicted to within a factor of three of their measured values. A relationship is also presented that allows the prediction of the Arrhenius parameters for the self-reactions of simple alkyl RO2 radicals. On the basis of the correlations, predictions of room-temperature rate coefficients are made for a number of atmospherically important peroxyl-peroxyl radical reactions. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irradiation of argon matrices at 12 K containing hydrogen peroxide and tetrachloroethene using the output from a medium-pressure mercury lamp gives rise to the carbonyl compound trichloroacetyl chloride (CCl3CClO). Similarly trichloroethene gives dichloroacetyl chloride ( CCl2HCClO) - predominantly in the gauche form - under the same conditions. It appears that the reaction is initiated by homolysis of the O-O bond of H2O2 to give OH radicals, one of which adds to the double bond of an alkene molecule. The reaction then proceeds by abstraction of the H atom of the hydroxyl group and Cl-atom migration. This mechanism has been explored by the use of DFT calculations to back up the experimental findings. The mechanism is analogous to that shown by the simple hydrocarbon alkenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rate coefficients for reactions of nitrate radicals (NO3) with the anthropogenic emissions 2-methylpent-2-ene, (Z)-3-methylpent-2-ene.. ethyl vinyl ether, and the stress-induced plant emission ethyl vinyl ketone (pent-1-en-3-one) were determined to be (9.3 +/- 1.1) x 10(-12), (9.3 +/- 3.2) x 10(-12), (1.7 +/- 1.3) x 10(-12) and (9.4 + 2.7) x 10(-17) cm(3) molecule(-1) s(-1). We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. Experiments with ethyl vinyl ether required a modification of our established procedure that might introduce additional uncertainties, and the errors suggested reflect these difficulties. Rate coefficients are discussed in terms of electronic and steric influences. Atmospheric lifetimes with respect to important oxidants in the troposphere were calculated. NO3-initiated oxidation is found to be the strongly dominating degradation route for 2-methylpent-2-ene, (Z)-3-methylpent-2-ene and ethyl vinyl ether. Atmospheric concentrations of the alkenes and their relative contribution to the total NMHC emissions from trucks can be expected to increase if plans for the introduction of particle filters for diesel engines are implemented on a global scale. Thus more kinetic data are required to better evaluate the impact of these emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these stress-induced plant emissions were measured using the discharge-flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO3, which enabled us to work in excess of the hexenol compounds over NO3. The rate coefficients determined were (2.93 +/- 0.58) x 10(-13) cm(3) molecule(-1) s(-1), (2.67 +/- 0.42) x 10(-13) cm(3) molecule(-1) s(-1), (4.43 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1), (1.56 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1), and (1.30 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1) for (Z)-hex-4-en-1-ol, (Z)-hex-3en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO3 with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N2O5 (used as the source of NO3) itself reacts with the hexenols. We used varying excesses of NO2 to determine simultaneously rate coefficients for reactions of NO3 and N2O5 with (E)-hex-3-en-1-ol of (5.2 +/- 1.8) x 10(-13) cm(3) molecule(-1) s(-1) and (3.1 +/- 2.3) x 10(-18) cm(3) molecule(-1) s(-1). Our new determinations suggest atmospheric lifetimes with respect to NO3-initiated oxidation of roughly 1-4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O-3. Recent measurements of [N2O5] suggest that the gas-phase reactions of N2O5 with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods are developed for predicting rate coefficients for reactions of initiators of tropospheric oxidation with unsaturated compounds that are abundant in the atmosphere; prognostic tools of this kind are essential for atmospheric chemists and modellers. To pursue the aim of exploring such tools, the kinetics of reactions of NO3, OH and O-3 with a series of alkenes are examined for correlations relating the logarithms of the rate coefficients to the energies of the highest occupied molecular orbitals (HOMOs) of the alkenes. A comparison of the values predicted by the correlations with experimental data (where the latter exist) allowed us to assess the reliability of our method. We used a series of theoretical methods to calculate the HOMO energies, and found that higher computational effort improves the agreement of the predicted rate coefficients with experimental values, especially for reactions of NO3 with alkenes that possess vinyllic halogen substituents. As a consequence, it is expedient to suggest new correlations to replace those presented by us and others that were based on the lower level of theory. We propose the following correlations for the reactions of NO3, OH and O-3 with alkenes: ln(k(NO3)/cm(3) molecule(-1) s(-1)) = 6.40(E-HOMO/eV) + 31.69, ln(k(OH)/cm(3) molecule(-1) s(-1)) = 1.21 (E-HOMO/eV)-12.34 and ln(k(O3)/cm(3) molecule(-1) s(-1)) = 3.28(E-HOMO/eV)-6.78. These new correlations have been developed using the larger experimental data sets now available, and the impact of the extended data on the quality of the correlations is examined in the paper. Atmospheric lifetimes have been calculated from both experimental and estimated rate coefficients to provide an overview of removal efficiencies for different classes of alkenes with respect to oxidative processes initiated by NO3, OH and O-3. A figure is presented to show the spatial scales over which alkenes may survive transport in competition with attack by NO3, OH and O-3. Removal by NO3 or OH is always more important than removal by O-3, and reactions with NO3 dominate for scales up to a few hundred metres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A discharge-flow system, coupled to cavity-enhanced absorption spectroscopy (CEAS) detection systems for NO3 at lambda = 662 nm and NO2 at lambda = 404 nm, was used to investigate the kinetics of the reactions of NO3 with eight peroxy radicals at P similar to 5 Torr and T similar to 295 K. Values of the rate constants obtained were (k/10(-12) cm(3) molecule(-1) s(-1)): CH3O2 (1.1 +/- 0.5), C2H5O2 (2.3 +/- 0.7), CH2FO2 (1.4 +/- 0.9), CH2ClO2 (3.8(-2.6)(+1.4)), c-C5H9O2 (1.2(-0.5)(+1.1)), c-C6H11O2 (1.9 +/- 0.7), CF3O2 (0.62 +/- 0.17) and CF3CFO2CF3 (0.24 +/- 0.13). We explore possible relationships between k and the orbital energies of the reactants. We also provide a brief discussion of the potential impact of the reactions of NO3 with RO2 on the chemistry of the night-time atmosphere.