45 resultados para modelled biological processes
em CentAUR: Central Archive University of Reading - UK
Resumo:
It is now well documented that carbohydrates play multiple roles in biological processes, and hence are interesting targets for chemical biology and medicinal chemistry programmes. This review focuses on a subset of carbohydrates, specifically sialic acid containing carbohydrates. It highlights their occurrence and diversity, and presents evidence for their roles in a range of biological pathways. It illustrates that they are targets for novel medicinal chemistry strategies for a range of therapeutic areas, including cancer and immunity. Case studies highlight opportunities and challenges in this area, and sialic acid based drugs that have entered clinical practice, and are promising candidates for future disease intervention schemes, are discussed. The review concludes by highlighting perspectives and emerging roles for these targets.
Resumo:
The effect of episodic drought on dissolved organic carbon (DOC) dynamics in peatlands has been the subject of considerable debate, as decomposition and DOC production is thought to increase under aerobic conditions, yet decreased DOC concentrations have been observed during drought periods. Decreased DOC solubility due to drought-induced acidification driven by sulphur (S) redox reactions has been proposed as a causal mechanism; however evidence is based on a limited number of studies carried out at a few sites. To test this hypothesis on a range of different peats, we carried out controlled drought simulation experiments on peat cores collected from six sites across Great Britain. Our data show a concurrent increase in sulphate (SO4) and a decrease in DOC across all sites during simulated water table draw-down, although the magnitude of the relationship between SO4 and DOC differed between sites. Instead, we found a consistent relationship across all sites between DOC decrease and acidification measured by the pore water acid neutralising capacity (ANC). ANC provided a more consistent measure of drought-induced acidification than SO4 alone because it accounts for differences in base cation and acid anions concentrations between sites. Rewetting resulted in rapid DOC increases without a concurrent increase in soil respiration, suggesting DOC changes were primarily controlled by soil acidity not soil biota. These results highlight the need for an integrated analysis of hydrologically driven chemical and biological processes in peatlands to improve our understanding and ability to predict the interaction between atmospheric pollution and changing climatic conditions from plot to regional and global scales.
Resumo:
Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.
Resumo:
In all biological processes, protein molecules and other small molecules interact to function and form transient macromolecular complexes. This interaction of two or more molecules can be described by a docking event. Docking is an important phase for structure-based drug design strategies, as it can be used as a method to simulate protein-ligand interactions. Various docking programs exist that allow automated docking, but most of them have limited visualization and user interaction. It would be advantageous if scientists could visualize the molecules participating in the docking process, manipulate their structures and manually dock them before submitting the new conformations to an automated docking process in an immersive environment, which can help stimulate the design/docking process. This also could greatly reduce docking time and resources. To achieve this, we propose a new virtual modelling/docking program, whereby the advantages of virtual modelling programs and the efficiency of the algorithms in existing docking programs will be merged.
Resumo:
We investigated diurnal nitrate (NO3-) concentration variability in the San Joaquin River using an in situ optical NO3- sensor and discrete sampling during a 5-day summer period characterized by high algal productivity. Dual NO3- isotopes (delta N-15(NO3) and delta O-18(NO3)) and dissolved oxygen isotopes (delta O-18(DO)) were measured over 2 days to assess NO3- sources and biogeochemical controls over diurnal time-scales. Concerted temporal patterns of dissolved oxygen (DO) concentrations and delta O-18(DO) were consistent with photosynthesis, respiration and atmospheric O-2 exchange, providing evidence of diurnal biological processes independent of river discharge. Surface water NO3- concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5-day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of delta N-15(NO3) and delta O-18(NO3) isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3- variability in the San Joaquin River during the study. The lack of a clear explanation for NO3- variability likely reflects a combination of riverine biological processes and time-varying physical transport of NO3- from upstream agricultural drains to the mainstem San Joaquin River. The application of an in situ optical NO3- sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.
Resumo:
The European research project TIDE (Tidal Inlets Dynamics and Environment) is developing and validating coupled models describing the morphological, biological and ecological evolution of tidal environments. The interactions between the physical and biological processes occurring in these regions requires that the system be studied as a whole rather than as separate parts. Extensive use of remote sensing including LiDAR is being made to provide validation data for the modelling. This paper describes the different uses of LiDAR within the project and their relevance to the TIDE science objectives. LiDAR data have been acquired from three different environments, the Venice Lagoon in Italy, Morecambe Bay in England, and the Eden estuary in Scotland. LiDAR accuracy at each site has been evaluated using ground reference data acquired with differential GPS. A semi-automatic technique has been developed to extract tidal channel networks from LiDAR data either used alone or fused with aerial photography. While the resulting networks may require some correction, the procedure does allow network extraction over large areas using objective criteria and reduces fieldwork requirements. The networks extracted may subsequently be used in geomorphological analyses, for example to describe the drainage patterns induced by networks and to examine the rate of change of networks. Estimation of the heights of the low and sparse vegetation on marshes is being investigated by analysis of the statistical distribution of the measured LiDAR heights. Species having different mean heights may be separated using the first-order moments of the height distribution.
Resumo:
Purpose of review Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. Recent findings In-vitro and ex-vivo studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may exert immunosuppressive and anticancer effects through changes in lipid raft organization. In addition, gangliosides and cholesterol may modulate lipid raft organization in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth. The roles of fatty acids and gangliosides, especially in relation to lipid rafts, in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer’s disease are poorly understood and require further investigation. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are starting to emerge, and indicate compelling evidence for the growing importance of membrane microdomains in health and disease. Summary In-vitro and animal studies show that n-3 PUFAs, cholesterol, and gangliosides modulate the structure and composition of lipid rafts, potentially influencing a wide range of biological processes, including immune function, neuronal signaling, cancer cell growth, entry of pathogens through the gut barrier, and insulin resistance in metabolic disorders. The physiological, clinical, and nutritional relevance of these observations remains to be determined.
Resumo:
A novel methodology is described in which transcriptomics is combined with the measurement of bread-making quality and other agronomic traits for wheat genotypes grown in different environments (wet and cool or hot and dry conditions) to identify transcripts associated with these traits. Seven doubled haploid lines from the Spark x Rialto mapping population were selected to be matched for development and known alleles affecting quality. These were grown in polytunnels with different environments applied 14 days post-anthesis, and the whole experiment was repeated over 2 years. Transcriptomics using the wheat Affymetrix chip was carried out on whole caryopsis samples at two stages during grain filling. Transcript abundance was correlated with the traits for approximately 400 transcripts. About 30 of these were selected as being of most interest, and markers were derived from them and mapped using the population. Expression was identified as being under cis control for 11 of these and under trans control for 18. These transcripts are candidates for involvement in the biological processes which underlie genotypic variation in these traits.
Resumo:
The chemotaxis pathway of Escherichia coli is one of the best studied and modelled biological signalling pathways. Here we extend existing modelling approaches by explicitly including a description of the formation and subcellular localization of intermediary complexes in the phosphotransfer pathway. The inclusion of these complexes shows that only about 60% of the total output response regulator (CheY) is uncomplexed at any moment and hence free to interact with its target, the flagellar motor. A clear strength of this model is its ability to predict the experimentally observable subcellular localization of CheY throughout a chemotactic response. We have found good agreement between the model output and experimentally determined CheY localization patterns. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with beta 1- and beta 3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLC gamma 2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in alpha-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for alpha-granule secretion and therefore may play a central role in the regulation of platelet function. (Blood. 2008; 112: 4523-4531)
Resumo:
The exploitation of microhabitats is widely considered to increase biodiversity in marine ecosystems. Although intertidal hermit crabs and gastropods may inhabit the same shell type and shore level, their microhabitat may differ depending on the state of the tide. On the south coast of Wales the hermit crab Pagurus bernhardus mainly inhabits the shells of Nucella lapillus (84%). Hermit crab shells had a significantly different encrusting community compared with live N. lapillus shells. At low tide the live gastropods were found on exposed rock surfaces whereas hermit crabs were restricted to tidal pools. Communities encrusting live gastropod shells were characterised by lower species richness and abundance compared with shells inhabited by hermit crabs (12 species found in total). A greater abundance and richness of epibionts was recorded from both shell types during the summer compared with winter. Differences in community composition between shell occupant types were attributed to microhabitats used by gastropods and hermit crabs and the associated desiccation pressures, rather than competitive interactions or shell characteristics. This contradicts earlier studies of subtidal shells where biological processes were considered more important than physical factors in controlling species abundance and richness patterns. The use of rockpool microhabitats by hermit crabs increases the biodiversity of rocky shores, as some species commonly found on hermit-crab-inhabited shells were rare in other local habitats.
Resumo:
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics.