4 resultados para mk.51a
em CentAUR: Central Archive University of Reading - UK
Resumo:
An unknown Gram-positive, catalase-positive, facultatively anaerobic, non-spore-forming, coccus-shaped bacterium originating from sediment was characterized using phenotypic, molecular chemical and molecular phylogenetic methods. Chemical studies revealed the presence of a cell-wall murein based on LL-diaminopimelic acid (type LL-Dpm-glycine(1)), a complex mixture of saturated, monounsaturated and iso- and anteiso-methyl-branched, non-hydroxylated, long-chain cellular fatty acids and tetrahydrogenated menaquinones with eight isoprene units [MK-8(H-4)] as the major respiratory lipoquinone. This combination of characteristics somewhat resembled members of the suborder Micrococcineae, but did not correspond to any currently described species. Comparative 16S rRNA gene sequencing confirmed that the unidentified coccus-shaped organism is a member of the Actinobacteria and represents a hitherto-unknown subline related to, albeit different from, a number of taxa including Intrasporangium, Janibacter, Terrabacter, Terracoccus and Ornithinicoccus. Based on phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium originating from lake sediment be classified as a new genus and species, Arsenicicoccus bolidensis gen. nov., sp. nov. (type strain CCUG 47306(T) = DSM 15745(T)).
Resumo:
Phenotypic and phylogenetic studies were performed on three isolates of an unknown Gram-negative, facultatively anaerobic, non-motile, yellow-pigmented, rod-shaped organism isolated from raw sewage. 16S rRNA gene sequence analysis indicated that these strains were members of the Bergeyella-Chryseobacterium-Riemerella branch of the family Flavobacteriaceae. The unknown bacterium was readily distinguished from reference strains by 16S rRNA gene sequencing and biochemical tests. The organism contained menaquinone MK-6 as the predominant respiratory quinone and had a DNA G + C content of 31 mol%. A most probable number-PCR approach was developed to detect, and estimate the numbers of, this organism. Untreated wastewater from one plant yielded an estimated count of 1.4 x 10(5) cells ml(-1), and untreated wastewater from a second plant yielded an estimated count of 1.4 x 10(4) cells ml(-1). Signal was not detected from treated effluent or from human stool specimens. On the basis of the results of the study presented, it is proposed that the unknown bacterium be classified in a novel genus Cloacibacterium, as Cloacibacterium normanense gen. nov., sp. nov., which is also the type species. The type strain of Cloacibacterium normanense is strain NRS1(T) (=CCUG 46293(T)=CIP 108613(T) =ATCC BAA-825(T) = DSM 15886(T)).
Resumo:
Rationale: Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective: We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results: Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions: These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.
Resumo:
Bulk polycrystalline samples in the series Ti1−xNbxS2 (0 ≤ x ≤ 0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50 nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x = 0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8 W/mK at 700 K. This enables the figure of merit to reach ZT = 0.3 at 700 K for x = 0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.