13 resultados para mini-implant
em CentAUR: Central Archive University of Reading - UK
Resumo:
Twenty-five small soil-filled perspex boxes arranged in a square, with dwarf sunflowers growing in them, were used to study micro-scale advection. Hydrological heterogeneity was introduced by applying two different amounts of irrigation water (low-irrigation, L, versus high-irrigation, H). The nine central boxes (4 H, 4 L and I bare box) were precision weighing lysimeters, yielding diurnal measurements of evaporation. After the onset of soil water stress, a large difference in latent heat flux (up to 4-fold) was observed between the lysimeters of the H and L treatments, mainly caused by large differences between H and L stomatal conductance values. This resulted in micro-advection, causing H soil-sunflower systems to evaporate well above equilibrium latent heat flux. The occurrence of micro-advective enhancement was reflected in large values of the Priestley-Taylor constant (often larger than 2.0) and generally negative values of sensible heat flux for the H treatment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper an attempt is described to increase the range of human sensory capabilities by means of implant technology. The key aim is to create an additional sense by feeding signals directly to the human brain, via the nervous system rather than via a presently operable human sense. Neural implant technology was used to directly interface a human nervous system with a computer in a one off trial. The output from active ultrasonic sensors was then employed to directly stimulate the human nervous system. An experimental laboratory set up was used as a test bed to assess the usefulness of this sensory addition.
Resumo:
In this paper results are shown to indicate the efficacy of a direct connection between the human nervous system and a computer network. Experimental results obtained thus far from a study lasting for over 3 months are presented, with particular emphasis placed on the direct interaction between the human nervous system and a piece of wearable technology. An overview of the present state of neural implants is given, as well as a range of application areas considered thus far. A view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.
Resumo:
Objective: To assess the usefulness, compatibility, and long-term operability of a microelectrode array into the median nerve of the left arm of a healthy volunteer, including perception of feedback stimulation and operation of an instrumented prosthetic hand. Setting: The study was carried out from March 14 through June 18, 2002, in England and the United States. Results: The blindfolded subject received feedback information, obtained from force and slip sensors on the prosthetic hand, and subsequently used the implanted device to control the hand by applying an appropriate force to g rip an unseen object. Operability was also demonstrated remotely via the Internet, with the subject in New York, NY, and the prosthetic hand in Reading, England. Finally, the subject was able to control an electric wheelchair, via decoded signals from the implant device, to select the direction of travel by opening and closing his hand. The implantation did not result in infection or any perceivable loss of hand sensation or motion control. The implant was finally extracted because of mechanical fatigue of the percutaneous connection. Further testing after extraction has not indicated any measurable long-term defects in the subject. Conclusions: This implant may allow recipients to have abilities they would otherwise not possess. The response to stimulation improved considerably during the trial, suggesting that the subject learned to process the incoming information more effectively.
Resumo:
By monitoring signals from the central nervous system, humans can be provided with a novel extra channel of communication that can, for example, be used for the voluntary control of peripheral devices. Meanwhile, stimulation of neural tissue can bring about sensation such as touch, can facilitate feedback from external, potentially remote devices and even opens up the possibility of new sensory input for the individual to experience. The concept of successfully harnessing and stimulating nervous system activity is though something that can only be achieved through an appropriate interface. However, interfacing the nervous system by means of implant technology carries with it many problems and dangers. Further, results achieved may not be as expected or as they at first appear. This paper describes a comparative study investigating different implant types and procedures. It is aimed at highlighting potential problem areas and is intended to provide a useful reference explaining important tolerances and limits.
Resumo:
In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.
Resumo:
The requirement to forecast volcanic ash concentrations was amplified as a response to the 2010 Eyjafjallajökull eruption when ash safety limits for aviation were introduced in the European area. The ability to provide accurate quantitative forecasts relies to a large extent on the source term which is the emissions of ash as a function of time and height. This study presents source term estimations of the ash emissions from the Eyjafjallajökull eruption derived with an inversion algorithm which constrains modeled ash emissions with satellite observations of volcanic ash. The algorithm is tested with input from two different dispersion models, run on three different meteorological input data sets. The results are robust to which dispersion model and meteorological data are used. Modeled ash concentrations are compared quantitatively to independent measurements from three different research aircraft and one surface measurement station. These comparisons show that the models perform reasonably well in simulating the ash concentrations, and simulations using the source term obtained from the inversion are in overall better agreement with the observations (rank correlation = 0.55, Figure of Merit in Time (FMT) = 25–46%) than simulations using simplified source terms (rank correlation = 0.21, FMT = 20–35%). The vertical structures of the modeled ash clouds mostly agree with lidar observations, and the modeled ash particle size distributions agree reasonably well with observed size distributions. There are occasionally large differences between simulations but the model mean usually outperforms any individual model. The results emphasize the benefits of using an ensemble-based forecast for improved quantification of uncertainties in future ash crises.
Resumo:
In this article we assess the abilities of a new electromagnetic (EM) system, the CMD Mini-Explorer, for prospecting of archaeological features in Ireland and the UK. The Mini-Explorer is an EM probe which is primarily aimed at the environmental/geological prospecting market for the detection of pipes and geology. It has long been evident from the use of other EM devices that such an instrument might be suitable for shallow soil studies and applicable for archaeological prospecting. Of particular interest for the archaeological surveyor is the fact that the Mini-Explorer simultaneously obtains both quadrature (‘conductivity’) and in-phase (relative to ‘magnetic susceptibility’) data from three depth levels. As the maximum depth range is probably about 1.5 m, a comprehensive analysis of the subsoil within that range is possible. As with all EM devices the measurements require no contact with the ground, thereby negating the problem of high contact resistance that often besets earth resistance data during dry spells. The use of the CMD Mini-Explorer at a number of sites has demonstrated that it has the potential to detect a range of archaeological features and produces high-quality data that are comparable in quality to those obtained from standard earth resistance and magnetometer techniques. In theory the ability to measure two phenomena at three depths suggests that this type of instrument could reduce the number of poor outcomes that are the result of single measurement surveys. The high success rate reported here in the identification of buried archaeology using a multi-depth device that responds to the two most commonly mapped geophysical phenomena has implications for evaluation style surveys. Copyright © 2013 John Wiley & Sons, Ltd.