7 resultados para microgravity complex fluid

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered for the full system. As examples of application, the how in elastic vessels is simulated with the pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady how are in good agreement with the analytical prediction, while the simulation results for pulsative how agree with the experimental observation of the aortic flows qualitatively. The approach has potential application in the study of the complex fluid systems such as the suspension system as well as the arterial blood flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/ porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation methods for quasi-static composites), the elastic - viscoelastic correspondence principle, and a unified treatment of the local and global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the saturating fluid, in the sense that it is consistent with the Brown-Korringa relation, when the frequency is sufficiently low. We present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with the Brown-Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz-clay mixtures, involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic velocity and attenuation spectra of a suite of typical reservoir rocks. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which coatings develop on weathered grain surfaces, and their potential impact on rates of fluid-mineral interaction, have been investigated by examining feldspars from a 1.1 ky old soil in the Glen Feshie chronosequence, Scottish highlands. Using the focused ion beam technique, electron-transparent, foils for characterization by transmission electron microscopy were cut from selected parts of grain surfaces. Some parts were bare whereas others had accumulations, a few micrometres thick, of Weathering products, often mixed with mineral and microbial debris. Feldspar exposed at bare grain surfaces is crystalline throughout and so there is no evidence for the presence of the amorphous 'leached layers' that typically form in acid-dissolution experiments and have been described from some natural Weathering contexts. The weathering products comprise sub-mu m thick crystallites of an Fe-K aluminosilicate, probably smectite, that have grown within an amorphous and probably organic-rich matrix. There is also evidence for crystallization of clays having been mediated by fungal hyphae. Coatings formed within Glen Feshie soils after similar to 1.1 ky are insufficiently continuous or impermeable to slow rates Of fluid-feldspar reactions, but provide valuable insights into the complex Weathering microenvironments oil debris and microbe-covered mineral surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest canopies are important components of the terrestrial carbon budget, which has motivated a worldwide effort, FLUXNET, to measure CO2 exchange between forests and the atmosphere. These measurements are difficult to interpret and to scale up to estimate exchange across a landscape. Here we review the effects of complex terrain on the mean flow, turbulence, and scalar exchange in canopy flows, as exemplified by adjustment to forest edges and hills, including the effects of stable stratification. We focus on the fundamental fluid mechanics, in which developments in theory, measurements, and modeling, particularly through large-eddy simulation, are identifying important processes and providing scaling arguments. These developments set the stage for the development of predictive models that can be used in combination with measurements to estimate exchange at the landscape scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solution calorimetry offers a reproducible technique for measuring the enthalpy of solution (ΔsolH) of a solute dissolving into a solvent. The ΔsolH of two solutes, propranolol HCl and mannitol were determined in simulated intestinal fluid (SIF) solutions designed to model the fed and fasted states within the gut, and in Hanks’ balanced salt solution (HBSS) of varying pH. The bile salt and lipid within the SIF solutions formed mixed micelles. Both solutes exhibited endothermic reactions in all solvents. The ΔsolH for propranolol HCl in the SIF solutions differed from those in the HBSS and was lower in the fed state than the fasted state SIF solution, revealing an interaction between propranolol and the micellar phase in both SIF solutions. In contrast, for mannitol the ΔsolH was constant in all solutions indicating minimal interaction between mannitol and the micellar phases of the SIF solutions. In this study, solution calorimetry proved to be a simple method for measuring the enthalpy associated with the dissolution of model drugs in complex biological media such as SIF solutions. In addition, the derived power–time curves allowed the time taken for the powdered solutes to form solutions to be estimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relations between the rheological and electrical properties of NaY zeolite electrorheological fluid and its solid phase are studied. It is found that then exist complex relations between its electrical and theological properties. The temperature spectra of dielectric properties of the fluid under high AC electric field are strongly field strength dependent. The relation between the DC conductivity of the fluid and the exciting electric field is experimentally presented as log sigma =A+BE1/2, when A is a strong function, but B, a very weak function of temperature. The shear stress of the fluid under a fixed electric field and temperature decreases with shear rate. A relaxation time for the adsorbed charges is estimated to be about 0.3 to 6.6 s in the temperature range from 280 to 380 K. The relaxation time qualitatively corresponds to the shear rate at which the shear stress begins to drop. The time dependent leaking current of the ER fluids under DC electric field is also measured. The conductivity increase is mainly caused by the structure evolution of particles. The experimental results can he explained with the calculations of Davis (J. Appl. Phys. 81(1997) pp.1985-1991) and Martin (J. Chem. Phys. 110(1999) pp.4854-4866). It is predicted that the NaY zeolite ER fluid strength would get degraded slowly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a general approach based on nonequilibrium thermodynamics for bridging the gap between a well-defined microscopic model and the macroscopic rheology of particle-stabilised interfaces. Our approach is illustrated by starting with a microscopic model of hard ellipsoids confined to a planar surface, which is intended to simply represent a particle-stabilised fluidfluid interface. More complex microscopic models can be readily handled using the methods outlined in this paper. From the aforementioned microscopic starting point, we obtain the macroscopic, constitutive equations using a combination of systematic coarse-graining, computer experiments and Hamiltonian dynamics. Exemplary numerical solutions of the constitutive equations are given for a variety of experimentally relevant flow situations to explore the rheological behaviour of our model. In particular, we calculate the shear and dilatational moduli of the interface over a wide range of surface coverages, ranging from the dilute isotropic regime, to the concentrated nematic regime.