5 resultados para microblogging
em CentAUR: Central Archive University of Reading - UK
Resumo:
PURPOSE: Since its introduction in 2006, messages posted to the microblogging system Twitter have provided a rich dataset for researchers, leading to the publication of over a thousand academic papers. This paper aims to identify this published work and to classify it in order to understand Twitter based research. DESIGN/METHODOLOGY/APPROACH: Firstly the papers on Twitter were identified. Secondly, following a review of the literature, a classification of the dimensions of microblogging research was established. Thirdly, papers were qualitatively classified using open coded content analysis, based on the paper’s title and abstract, in order to analyze method, subject, and approach. FINDINGS: The majority of published work relating to Twitter concentrates on aspects of the messages sent and details of the users. A variety of methodological approaches are used across a range of identified domains. RESEARCH LIMITATIONS/IMPLICATIONS: This work reviewed the abstracts of all papers available via database search on the term “Twitter” and this has two major implications: 1) the full papers are not considered and so works may be misclassified if their abstract is not clear, 2) publications not indexed by the databases, such as book chapters, are not included. ORIGINALITY/VALUE: To date there has not been an overarching study to look at the methods and purpose of those using Twitter as a research subject. Our major contribution is to scope out papers published on Twitter until the close of 2011. The classification derived here will provide a framework within which researchers studying Twitter related topics will be able to position and ground their work
Resumo:
The Twitter network has been labelled the most commonly used microblogging application around today. With about 500 million estimated registered users as of June, 2012, Twitter has become a credible medium of sentiment/opinion expression. It is also a notable medium for information dissemination; including breaking news on diverse issues since it was launched in 2007. Many organisations, individuals and even government bodies follow activities on the network in order to obtain knowledge on how their audience reacts to tweets that affect them. We can use postings on Twitter (known as tweets) to analyse patterns associated with events by detecting the dynamics of the tweets. A common way of labelling a tweet is by including a number of hashtags that describe its contents. Association Rule Mining can find the likelihood of co-occurrence of hashtags. In this paper, we propose the use of temporal Association Rule Mining to detect rule dynamics, and consequently dynamics of tweets. We coined our methodology Transaction-based Rule Change Mining (TRCM). A number of patterns are identifiable in these rule dynamics including, new rules, emerging rules, unexpected rules and ?dead' rules. Also the linkage between the different types of rule dynamics is investigated experimentally in this paper.
Resumo:
Background: Since their inception, Twitter and related microblogging systems have provided a rich source of information for researchers and have attracted interest in their affordances and use. Since 2009 PubMed has included 123 journal articles on medicine and Twitter, but no overview exists as to how the field uses Twitter in research. // Objective: This paper aims to identify published work relating to Twitter indexed by PubMed, and then to classify it. This classification will provide a framework in which future researchers will be able to position their work, and to provide an understanding of the current reach of research using Twitter in medical disciplines. Limiting the study to papers indexed by PubMed ensures the work provides a reproducible benchmark. // Methods: Papers, indexed by PubMed, on Twitter and related topics were identified and reviewed. The papers were then qualitatively classified based on the paper’s title and abstract to determine their focus. The work that was Twitter focused was studied in detail to determine what data, if any, it was based on, and from this a categorization of the data set size used in the studies was developed. Using open coded content analysis additional important categories were also identified, relating to the primary methodology, domain and aspect. // Results: As of 2012, PubMed comprises more than 21 million citations from biomedical literature, and from these a corpus of 134 potentially Twitter related papers were identified, eleven of which were subsequently found not to be relevant. There were no papers prior to 2009 relating to microblogging, a term first used in 2006. Of the remaining 123 papers which mentioned Twitter, thirty were focussed on Twitter (the others referring to it tangentially). The early Twitter focussed papers introduced the topic and highlighted the potential, not carrying out any form of data analysis. The majority of published papers used analytic techniques to sort through thousands, if not millions, of individual tweets, often depending on automated tools to do so. Our analysis demonstrates that researchers are starting to use knowledge discovery methods and data mining techniques to understand vast quantities of tweets: the study of Twitter is becoming quantitative research. // Conclusions: This work is to the best of our knowledge the first overview study of medical related research based on Twitter and related microblogging. We have used five dimensions to categorise published medical related research on Twitter. This classification provides a framework within which researchers studying development and use of Twitter within medical related research, and those undertaking comparative studies of research relating to Twitter in the area of medicine and beyond, can position and ground their work.
Resumo:
Twitter has become a dependable microblogging tool for real time information dissemination and newsworthy events broadcast. Its users sometimes break news on the network faster than traditional newsagents due to their presence at ongoing real life events at most times. Different topic detection methods are currently used to match Twitter posts to real life news of mainstream media. In this paper, we analyse tweets relating to the English FA Cup finals 2012 by applying our novel method named TRCM to extract association rules present in hash tag keywords of tweets in different time-slots. Our system identify evolving hash tag keywords with strong association rules in each time-slot. We then map the identified hash tag keywords to event highlights of the game as reported in the ground truth of the main stream media. The performance effectiveness measure of our experiments show that our method perform well as a Topic Detection and Tracking approach.
Resumo:
The General Election for the 56th United Kingdom Parliament was held on 7 May 2015. Tweets related to UK politics, not only those with the specific hashtag ”#GE2015”, have been collected in the period between March 1 and May 31, 2015. The resulting dataset contains over 28 million tweets for a total of 118 GB in uncompressed format or 15 GB in compressed format. This study describes the method that was used to collect the tweets and presents some analysis, including a political sentiment index, and outlines interesting research directions on Big Social Data based on Twitter microblogging.