224 resultados para microbiota ruminal
em CentAUR: Central Archive University of Reading - UK
Resumo:
The human gut microbiota comprises a diverse microbial consortium closely co-evolved with the human genome and diet. The importance of the gut microbiota in regulating human health and disease has however been largely overlooked due to the inaccessibility of the intestinal habitat, the complexity of the gut microbiota itself and the fact that many of its members resist cultivation and are in fact new to science. However, with the emergence of 16S rRNA molecular tools and "post-genomics" high resolution technologies for examining microorganisms as they occur in nature without the need for prior laboratory culture, this limited view of the gut microbiota is rapidly changing. This review will discuss the application of molecular microbiological tools to study the human gut microbiota in a culture independent manner. Genomics or metagenomics approaches have a tremendous capability to generate compositional data and to measure the metabolic potential encoded by the combined genomes of the gut microbiota. Another post-genomics approach, metabonomics, has the capacity to measure the metabolic kinetic or flux of metabolites through an ecosystem at a particular point in time or over a time course. Metabonomics thus derives data on the function of the gut microbiota in situ and how it responds to different environmental stimuli e. g. substrates like prebiotics, antibiotics and other drugs and in response to disease. Recently these two culture independent, high resolution approaches have been combined into a single "transgenomic" approach which allows correlation of changes in metabolite profiles within human biofluids with microbiota compositional metagenomic data. Such approaches are providing novel insight into the composition, function and evolution of our gut microbiota.
Resumo:
A series of in vitro studies was, conducted to determine the effects of adding a commercial enzyme product on the hydrolysis and fermentation of cellulose, xylan, and a mixture (1:1 wt/wt) of both. The enzyme product (Liquicell 2500, Specialty Enzymes and Biochemicals, Fresno, CA) was derived from Trichoderma reesei and contained mainly xylanase and cellulase activities. Addition of enzyme (0.5, 2.55 and 5.1 muL/g of DM) in the absence of ruminal fluid increased (P < 0.001) the release of reducing sugars from xylan and the mixture after 20 h of incubation at 20degreesC. Incubations with ruminal fluid showed that enzyme (0.5 and 2.55 muL/g of DM) increased (P < 0.05) the initial (up to 6 h) xylanase, endoglucanase, and beta-D-glucosidase activities in the liquid fraction by an average of 85%. Xylanase and endoglucanase activities in the solid fraction also were increased (P < 0.05) by enzyme addition, indicating an increase in fibrolytic activity due to ruminal microbes. Gas production over 96 h of incubation was determined using a gas pressure measurement technique. Incremental levels of enzyme increased (P < 0.05) the rate of gas production of all substrates, suggesting that fermentation of cellulose and xylan was enzyme-limited. However, adding the enzyme at levels higher than 2.55 muL/g of DM failed to further increase the rate of gas production, indicating that the maximal level of stimulation was already achieved at lower enzyme concentrations. It was concluded that enzymes enhanced the fermentation of cellulose and xylan by a combination of pre- and postincubation effects (i.e., an increase in the release of reducing sugars during the pretreatment phase and an increase in the hydrolytic activity of the liquid and solid fractions of the ruminal fluid), which was reflected in a higher rate of fermentation.
Resumo:
A series of in vitro experiments was carried out to examine the impact of enzyme application rate and incubation medium pH on the rate and extent of fermentation of alfalfa stems. In Experiment 1, a commercial enzyme product (Liquicell 2500, Specialty Enzyme and Biochemicals, Fresno, CA, USA) was added to alfalfa stems at six levels: 0, 0.51, 1.02, 2.55, 5.1, and 25.5 mu l/g (control and L1-L5, respectively) to forage DM in a completely randomized design, with a factorial arrangement of treatments. Rate and extent of fermentation and apparent organic matter degradation (OMD) were determined in vitro, using a gas production technique. Addition of enzyme linearly increased (P < 0.01) gas production for up to 12 h (68.9, 70.9, 67.6, 67.9, 71.9, and 74.9 ml/g OM for control, L1-L5, respectively) and OMD for up to 19 h incubation (0.425, 0.444, 0.433, 0.446, 0.443, and 0.451 for control, L1-L5, respectively), but no increases (P > 0.05) were detected thereafter. In Experiment 2, the effect of the same enzyme as used previously (added at 0.51 mu l/g forage DM, directly into the incubation medium), and buffer pH were examined using the ANKOM system, in a completely randomized design. Incubation medium pH was altered using 1 M citric acid, in order to obtain target initial pH values of 6.8 (control, no citric acid added), 6.2, 5.8, and 5.4. Actual initial pH values achieved were 6.72, 6.50, 6.20, and 5.72. Lowering the pH decreased (P < 0.01) dry matter disappearance (DMD) at 18 h incubation (0.339, 0.341, 0.314, and 0.291 for 6.72, 6.50, 6.20, and 5.72, respectively), whereas enzyme addition increased (P < 0.05) DMD at 24 h (0.363 versus 0.387 for control and enzyme-treated, respectively). Addition of enzyme increased (P < 0.05) neutral detergent fibre (NDF), acid detergent fibre (ADF), and hemicellulose (HC) degradation at pH 6.50 (0.077 versus 0.117; 0.020 versus 0.051; 0.217 versus 0.270 for control and enzyme-treated NDF, ADF and hemicellulose degradation, respectively) and 6.72 (0.091 versus 0.134; 0.041 versus 0.079; 0.205 versus 0.261 for control and enzyme-treated NDF, ADF and HC degradation, respectively). It is concluded that the positive effects of this enzyme product were independent of the pre-treatment period, but pH influenced the responses to enzyme supplementation. Under the conditions of this experiment, exogenous fibrolytic enzymes seemed to work better at close to neutrality ruminal pH conditions. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A commercial blend of essential oil (EO) compounds was added to a grass, maize silage, and concentrate diet fed to dairy cattle in order to determine their influence on protein metabolism by ruminal microorganisms. EO inhibited (P < 0.05) the rate of deamination of amino acids. Pure-culture studies indicated that the species most sensitive to EO were ammonia-hyperproducing bacteria and anaerobic fungi.
Resumo:
Aims: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18 : 2) via conjugated 18 : 2 metabolites (mainly cis-9,trans-11-18 : 2, conjugated linoleic acid) to vaccenic acid (trans-11-18 : 1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18 : 0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. Materials and Results: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. Conclusion: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. Signifance and Impact of the Study: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.
Resumo:
Browse plants play an important role in providing feed for livestock in semi-arid rangelands of Africa. Chemical composition and in vitro ruminal fermentation of leaves collected from Acacia burkei, Acacia tortilis, Acacia nilotica, Dichrostachys cinerea and Ehretia obtusifolia in communal grazing lands in the lowveld of Swaziland is presented. Leaves were collected from trees located on two soil types (i.e., lithosol and vertisol) in the communal land but it had no effect on the chemical composition of tree leaves. The NDFom and ADFom content were highest in D. cinerea and A. burkei and lowest in E. obtusifolia and A. nilotica. Crude protein (CP) contents ranged between 108 g/kg and 122 g/kg DM. D. cinerea had the highest Ca and Mg content, while A. tortilis had the lowest. There were marked variations in K level amongst browse species, with A. tortilis (9.1 g/kg DM) having the highest value. The P, Zn and Fe did not differ between browse species. Soil type and tree species interaction impacted in vitro fermentation parameters. Extent of fermentation, as measured by 48 h cumulative gas production, and organic matter degradability was highest in E. obtusifolia leaves and lowest in D. cinerea leaves within soil type. Fermentation efficiency, as measured by partitioning factors, was highest in A. nilotica leaves. Leaves of E. obtusifolia could be a valuable supplementary feedstuff for ruminant livestock due to its in vitro fermentation characteristics as well as low fibre and moderate CP levels. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
AIM: To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro. METHODS AND RESULTS: Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P < 0.009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P < 0.0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA. CONCLUSION: The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.
Resumo:
The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.
Resumo:
The effects of probiotic supplementation on the intestinal re-growth microbiota following antibiotic therapy were studied in a double-blind placebo-controlled study. In the placebo group, numbers of facultative anaerobes and enterobacteria increased significantly, and at day 35 the numbers were significantly higher in the placebo group than in the active group; in the active group, the numbers of bacteroides increased significantly. Although the numbers of enterococci in both groups did not change, in the placebo group the number of patients harbouring antibiotic-resistant enterococci post therapy increased significantly. There was no change in the incidence rate of antibiotic resistance among the patients in the probiotic group.
Resumo:
Background: The pathogenesis of diarrhea in patients receiving enteral feeding includes colonic water secretion, antibiotic prescription, and enteropathogenic colonization, each of which involves an interaction with the gastrointestinal microbiota. Objective: The objective was to investigate temporal changes in the concentrations of fecal microbiota and short-chain fatty acids (SCFAs) in patients starting 14-d of enteral feeding and to compare these changes between patients who do and do not develop diarrhea. Design: Twenty patients starting exclusive nasogastric enteral feeding were monitored for 14 d. Fecal samples were collected at the start, middle, and end of this period and were analyzed for major bacterial groups by using culture independent fluorescence in situ hybridization and for SCFAs by using gas-liquid chromatography. Results: Although no significant changes in fecal microbiota or SCFAs were observed during enteral feeding, stark alterations occurred within individual patients. Ten patients (50%) developed diarrhea, and these patients had significantly higher concentrations of clostridia (P = 0.026) and lower concentrations (P = 0.069) and proportions (P = 0.029) of bifidobacteria. Patients with and without diarrhea had differences in the proportion of bifidobacteria (median: 0.4% and 3.7%; interquartile range: 0.8 compared with 4.3; P = 0.035) and clostridia (median: 10.4% and 3.7%; interquartile range: 14.7 compared with 7.0; P = 0.063), respectively, even at the start of enteral feeding. Patients who developed diarrhea had higher concentrations of total fecal SCFAs (P = 0.044), acetate (P = 0.029), and butyrate (P = 0.055). Conclusion: Intestinal dysbiosis occurs in patients who develop diarrhea during enteral feeding and may be involved in its pathogenesis. Am J Clin Nutr 2009; 89: 240-7.
Resumo:
1,2-sn-Diacylglycerols (DAGs) are activators of protein kinase C (PKQ, which is involved in the regulation of colonic mucosal proliferation. Extracellular DAG has been shown to stimulate the growth of cancer cell lines in vitro and may therefore play an important role in tumor promotion. DAG has been detected in human fecal extracts and is thought to be of microbial origin. Hitherto, no attempts have been made to identify the predominant fecal bacterial species involved in its production. We therefore used anaerobic batch culture systems to determine whether fecal bacteria could utilize phosphatidylcholine (0.5% [wt/vol]) to produce DAG. Production was found to be dependent upon the presence of the substrate and was enhanced in the presence of high concentrations of deoxycholate (5 and 10 mM) in the growth medium. Moreover, its production increased with the pH, and large inter- and intraindividual variations were observed between cultures seeded with inocula from different individuals. Clostridia and Escherichia coli multiplied in the fermentation systems, indicating their involvement in phosphatidylcholine metabolism. On the other hand, there was a significant decrease in the number of Bifidobacterium spp. in the presence of phosphatidylcholine. Pure-culture experiments showed that 10 of the 12 strains yielding the highest DAG levels (>50 nmol/ml) were isolated from batch culture enrichments run at pH 8.5. We found that the strains capable of producing large amounts of DAG were predominantly Clostridium bifermentans (8 of 12), followed by Escherichia coli (2 of 12). Interestingly, one DAG-producing strain was Bifidobacterium infantis, which is often considered a beneficial gut microorganism. Our results have provided further evidence that fecal bacteria can produce DAG and that specific bacterial groups are involved in this process. Future strategies to reduce DAG formation in the gut should target these species.
Resumo:
The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.
Resumo:
The human gut microbiota comprises a diverse microbial consortium closely co-evolved with the human genome and diet. The importance of the gut microbiota in regulating human health and disease has however been largely overlooked due to the inaccessibility of the intestinal habitat, the complexity of the gut microbiota itself and the fact that many of its members resist cultivation and are in fact new to science. However, with the emergence of 16S rRNA molecular tools and "post-genomics" high resolution technologies for examining microorganisms as they occur in nature without the need for prior laboratory culture, this limited view of the gut microbiota is rapidly changing. This review will discuss the application of molecular microbiological tools to study the human gut microbiota in a culture independent manner. Genomics or metagenomics approaches have a tremendous capability to generate compositional data and to measure the metabolic potential encoded by the combined genomes of the gut microbiota. Another post-genomics approach, metabonomics, has the capacity to measure the metabolic kinetic or flux of metabolites through an ecosystem at a particular point in time or over a time course. Metabonomics thus derives data on the function of the gut microbiota in situ and how it responds to different environmental stimuli e.g. substrates like prebiotics, antibiotics and other drugs and in response to disease. Recently these two culture independent, high resolution approaches have been combined into a single "transgenomic" approach which allows correlation of changes in metabolite profiles within human biofluids with microbiota compositional metagenomic data. Such approaches are providing novel insight into the composition, function and evolution of our gut microbiota.
Resumo:
Obesity is sweeping the westernized world at a rate which far outstrips human genomic evolution, highlighting the importance of the obesogenic environment. Diet is an important component of this obesogenic environment, with certain diets (high fat, high refined carbohydrates and sugar) predisposing to overweight. On the other hand, there are also foods shown to protect against obesity and the diseases of obesity, including whole plant foods, dairy products, dietary fibre and functional foods like probiotics, prebiotics and phytochemicals. Interestingly, many of these foods mediate their health-promoting activities through the gut microbiota. The human gut microbiota itself has recently been identified as a contributory factor in this obesogenic environment, with differences observed between lean and obese. Evidence from human studies indicates that important groups of fermentative bacteria differ in abundance between lean and obese. Recently it has been suggested that anomalous microbiota composition in infancy can predispose to overweight in later life, highlighting the important role of optimal microbiota successional development, and that – as observed in laboratory animals – the gut microbiota may contribute to the aetiology of obesity. In this review we will introduce the gut microbiota, describe its interactions with major dietary components and the host, and then go on to discuss evidence indicating that the gut microbiota may contribute to the obesogenic environment. Finally, we will explore possible strategies for modulating the composition and activity of the human gut microbiota which may impact on obesity or the metabolic diseases associated with obesity. (Nutritional Therapy & Metabolism 2009; 27: 113-33)
Resumo:
Gut microflora-mucosal interactions may be involved in the pathogenesis of irritable bowel syndrome (IBS). To investigate the efficacy of a novel prebiotic trans-galactooligosaccharide in changing the colonic microflora and improve the symptoms in IBS sufferers. In all, 44 patients with Rome II positive IBS completed a 12-week single centre parallel crossover controlled clinical trial. Patients were randomized to receive either 3.5 g/d prebiotic, 7 g/d prebiotic or 7 g/d placebo. IBS symptoms were monitored weekly and scored according to a 7-point Likert scale. Changes in faecal microflora, stool frequency and form (Bristol stool scale) subjective global assessment (SGA), anxiety and depression and QOL scores were also monitored. The prebiotic significantly enhanced faecal bifidobacteria (3.5 g/d P < 0.005; 7 g/d P < 0.001). Placebo was without effect on the clinical parameters monitored, while the prebiotic at 3.5 g/d significantly changed stool consistency (P < 0.05), improved flatulence (P < 0.05) bloating (P < 0.05), composite score of symptoms (P < 0.05) and SGA (P < 0.05). The prebiotic at 7 g/d significantly improved SGA (P < 0.05) and anxiety scores (P < 0.05). The galactooligosaccharide acted as a prebiotic in specifically stimulating gut bifidobacteria in IBS patients and is effective in alleviating symptoms. These findings suggest that the prebiotic has potential as a therapeutic agent in IBS.