29 resultados para message passing

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inferring population admixture from genetic data and quantifying it is a difficult but crucial task in evolutionary and conservation biology. Unfortunately state-of-the-art probabilistic approaches are computationally demanding. Effectively exploiting the computational power of modern multiprocessor systems can thus have a positive impact to Monte Carlo-based simulation of admixture modeling. A novel parallel approach is briefly described and promising results on its message passing interface (MPI)-based C implementation are reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Danish Eulerian Model (DEM) is a powerful air pollution model, designed to calculate the concentrations of various dangerous species over a large geographical region (e.g. Europe). It takes into account the main physical and chemical processes between these species, the actual meteorological conditions, emissions, etc.. This is a huge computational task and requires significant resources of storage and CPU time. Parallel computing is essential for the efficient practical use of the model. Some efficient parallel versions of the model were created over the past several years. A suitable parallel version of DEM by using the Message Passing Interface library (AIPI) was implemented on two powerful supercomputers of the EPCC - Edinburgh, available via the HPC-Europa programme for transnational access to research infrastructures in EC: a Sun Fire E15K and an IBM HPCx cluster. Although the implementation is in principal, the same for both supercomputers, few modifications had to be done for successful porting of the code on the IBM HPCx cluster. Performance analysis and parallel optimization was done next. Results from bench marking experiments will be presented in this paper. Another set of experiments was carried out in order to investigate the sensitivity of the model to variation of some chemical rate constants in the chemical submodel. Certain modifications of the code were necessary to be done in accordance with this task. The obtained results will be used for further sensitivity analysis Studies by using Monte Carlo simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since its introduction in 1993, the Message Passing Interface (MPI) has become a de facto standard for writing High Performance Computing (HPC) applications on clusters and Massively Parallel Processors (MPPs). The recent emergence of multi-core processor systems presents a new challenge for established parallel programming paradigms, including those based on MPI. This paper presents a new Java messaging system called MPJ Express. Using this system, we exploit multiple levels of parallelism - messaging and threading - to improve application performance on multi-core processors. We refer to our approach as nested parallelism. This MPI-like Java library can support nested parallelism by using Java or Java OpenMP (JOMP) threads within an MPJ Express process. Practicality of this approach is assessed by porting to Java a massively parallel structure formation code from Cosmology called Gadget-2. We introduce nested parallelism in the Java version of the simulation code and report good speed-ups. To the best of our knowledge it is the first time this kind of hybrid parallelism is demonstrated in a high performance Java application. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the transition to multicore processors almost complete, the parallel processing community is seeking efficient ways to port legacy message passing applications on shared memory and multicore processors. MPJ Express is our reference implementation of Message Passing Interface (MPI)-like bindings for the Java language. Starting with the current release, the MPJ Express software can be configured in two modes: the multicore and the cluster mode. In the multicore mode, parallel Java applications execute on shared memory or multicore processors. In the cluster mode, Java applications parallelized using MPJ Express can be executed on distributed memory platforms like compute clusters and clouds. The multicore device has been implemented using Java threads in order to satisfy two main design goals of portability and performance. We also discuss the challenges of integrating the multicore device in the MPJ Express software. This turned out to be a challenging task because the parallel application executes in a single JVM in the multicore mode. On the contrary in the cluster mode, the parallel user application executes in multiple JVMs. Due to these inherent architectural differences between the two modes, the MPJ Express runtime is modified to ensure correct semantics of the parallel program. Towards the end, we compare performance of MPJ Express (multicore mode) with other C and Java message passing libraries---including mpiJava, MPJ/Ibis, MPICH2, MPJ Express (cluster mode)---on shared memory and multicore processors. We found out that MPJ Express performs signicantly better in the multicore mode than in the cluster mode. Not only this but the MPJ Express software also performs better in comparison to other Java messaging libraries including mpiJava and MPJ/Ibis when used in the multicore mode on shared memory or multicore processors. We also demonstrate effectiveness of the MPJ Express multicore device in Gadget-2, which is a massively parallel astrophysics N-body siimulation code.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work reported in this paper is motivated towards handling single node failures for parallel summation algorithms in computer clusters. An agent based approach is proposed in which a task to be executed is decomposed to sub-tasks and mapped onto agents that traverse computing nodes. The agents intercommunicate across computing nodes to share information during the event of a predicted node failure. Two single node failure scenarios are considered. The Message Passing Interface is employed for implementing the proposed approach. Quantitative results obtained from experiments reveal that the agent based approach can handle failures more efficiently than traditional failure handling approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How can a bridge be built between autonomic computing approaches and parallel computing systems? The work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing approach based on ‘Intelligent Agents’ to achieve autonomy for distributed parallel computing systems. In the proposed approach, a task to be executed on parallel computing cores is carried onto a computing core by carrier agents that can seamlessly transfer between processing cores in the event of a predicted failure. The cognitive capabilities of the carrier agents on a parallel processing core serves in achieving the self-ware objectives of autonomic computing, hence applying autonomic computing concepts for the benefit of parallel computing systems. The feasibility of the proposed approach is validated by simulation studies using a multi-agent simulator on an FPGA (Field-Programmable Gate Array) and experimental studies using MPI (Message Passing Interface) on a computer cluster. Preliminary results confirm that applying autonomic computing principles to parallel computing systems is beneficial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper details a strategy for modifying the source code of a complex model so that the model may be used in a data assimilation context, {and gives the standards for implementing a data assimilation code to use such a model}. The strategy relies on keeping the model separate from any data assimilation code, and coupling the two through the use of Message Passing Interface (MPI) {functionality}. This strategy limits the changes necessary to the model and as such is rapid to program, at the expense of ultimate performance. The implementation technique is applied in different models with state dimension up to $2.7 \times 10^8$. The overheads added by using this implementation strategy in a coupled ocean-atmosphere climate model are shown to be an order of magnitude smaller than the addition of correlated stochastic random errors necessary for some nonlinear data assimilation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical orthogonal function (EOF) analysis is a powerful tool for data compression and dimensionality reduction used broadly in meteorology and oceanography. Often in the literature, EOF modes are interpreted individually, independent of other modes. In fact, it can be shown that no such attribution can generally be made. This review demonstrates that in general individual EOF modes (i) will not correspond to individual dynamical modes, (ii) will not correspond to individual kinematic degrees of freedom, (iii) will not be statistically independent of other EOF modes, and (iv) will be strongly influenced by the nonlocal requirement that modes maximize variance over the entire domain. The goal of this review is not to argue against the use of EOF analysis in meteorology and oceanography; rather, it is to demonstrate the care that must be taken in the interpretation of individual modes in order to distinguish the medium from the message.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: