14 resultados para medical image segmentation
em CentAUR: Central Archive University of Reading - UK
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Resumo:
Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.
Resumo:
We present an intuitive geometric approach for analysing the structure and fragility of T1-weighted structural MRI scans of human brains. Apart from computing characteristics like the surface area and volume of regions of the brain that consist of highly active voxels, we also employ Network Theory in order to test how close these regions are to breaking apart. This analysis is used in an attempt to automatically classify subjects into three categories: Alzheimer’s disease, mild cognitive impairment and healthy controls, for the CADDementia Challenge.
Resumo:
Williams syndrome (WS) is a developmental disorder in which visuo-spatial cognition is poor relative to verbal ability. At the level of visuo-spatial perception, individuals with WS can perceive both the local and global aspects of an image. However, the manner in which local elements are integrated into a global whole is atypical, with relative strengths in integration by luminance, closure, and alignment compared to shape, orientation and proximity. The present study investigated the manner in which global images are segmented into local parts. Segmentation by seven gestalt principles was investigated: proximity, shape, luminance, orientation, closure, size (and alignment: Experiment I only). Participants were presented with uniform texture squares and asked to detect the presence of a discrepant patch (Experiment 1) or to identify the form of a discrepant patch as a capital E or H (Experiment 2). In Experiment 1, the pattern and level of performance of the WS group did not differ from that of typically developing controls, and was commensurate with the general level of non-verbal ability observed in WS. These results were replicated in Experiment 2, with the exception of segmentation by proximity, where individuals with WS demonstrated superior performance relative to the remaining segmentation types. Overall, the results suggest that, despite some atypical aspects of visuo-spatial perception in WS, the ability to segment a global form into parts is broadly typical in this population. In turn, this informs predictions of brain function in WS, particularly areas V1 and V4. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we address issues in segmentation Of remotely sensed LIDAR (LIght Detection And Ranging) data. The LIDAR data, which were captured by airborne laser scanner, contain 2.5 dimensional (2.5D) terrain surface height information, e.g. houses, vegetation, flat field, river, basin, etc. Our aim in this paper is to segment ground (flat field)from non-ground (houses and high vegetation) in hilly urban areas. By projecting the 2.5D data onto a surface, we obtain a texture map as a grey-level image. Based on the image, Gabor wavelet filters are applied to generate Gabor wavelet features. These features are then grouped into various windows. Among these windows, a combination of their first and second order of statistics is used as a measure to determine the surface properties. The test results have shown that ground areas can successfully be segmented from LIDAR data. Most buildings and high vegetation can be detected. In addition, Gabor wavelet transform can partially remove hill or slope effects in the original data by tuning Gabor parameters.
Resumo:
Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.
Resumo:
Automatically extracting interesting objects from videos is a very challenging task and is applicable to many research areas such robotics, medical imaging, content based indexing and visual surveillance. Automated visual surveillance is a major research area in computational vision and a commonly applied technique in an attempt to extract objects of interest is that of motion segmentation. Motion segmentation relies on the temporal changes that occur in video sequences to detect objects, but as a technique it presents many challenges that researchers have yet to surmount. Changes in real-time video sequences not only include interesting objects, environmental conditions such as wind, cloud cover, rain and snow may be present, in addition to rapid lighting changes, poor footage quality, moving shadows and reflections. The list provides only a sample of the challenges present. This thesis explores the use of motion segmentation as part of a computational vision system and provides solutions for a practical, generic approach with robust performance, using current neuro-biological, physiological and psychological research in primate vision as inspiration.
Resumo:
The authors demonstrate four real-time reactive responses to movement in everyday scenes using an active head/eye platform. They first describe the design and realization of a high-bandwidth four-degree-of-freedom head/eye platform and visual feedback loop for the exploration of motion processing within active vision. The vision system divides processing into two scales and two broad functions. At a coarse, quasi-peripheral scale, detection and segmentation of new motion occurs across the whole image, and at fine scale, tracking of already detected motion takes place within a foveal region. Several simple coarse scale motion sensors which run concurrently at 25 Hz with latencies around 100 ms are detailed. The use of these sensors are discussed to drive the following real-time responses: (1) head/eye saccades to moving regions of interest; (2) a panic response to looming motion; (3) an opto-kinetic response to continuous motion across the image and (4) smooth pursuit of a moving target using motion alone.
Resumo:
This paper presents a neuroscience inspired information theoretic approach to motion segmentation. Robust motion segmentation represents a fundamental first stage in many surveillance tasks. As an alternative to widely adopted individual segmentation approaches, which are challenged in different ways by imagery exhibiting a wide range of environmental variation and irrelevant motion, this paper presents a new biologically-inspired approach which computes the multivariate mutual information between multiple complementary motion segmentation outputs. Performance evaluation across a range of datasets and against competing segmentation methods demonstrates robust performance.
Resumo:
Sclera segmentation is shown to be of significant importance for eye and iris biometrics. However, sclera segmentation has not been extensively researched as a separate topic, but mainly summarized as a component of a broader task. This paper proposes a novel sclera segmentation algorithm for colour images which operates at pixel-level. Exploring various colour spaces, the proposed approach is robust to image noise and different gaze directions. The algorithm’s robustness is enhanced by a two-stage classifier. At the first stage, a set of simple classifiers is employed, while at the second stage, a neural network classifier operates on the probabilities’ space generated by the classifiers at stage 1. The proposed method was ranked the 1st in Sclera Segmentation Benchmarking Competition 2015, part of BTAS 2015, with a precision of 95.05% corresponding to a recall of 94.56%.