100 resultados para maximum principle
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper considers left-invariant control systems defined on the Lie groups SU(2) and SO(3). Such systems have a number of applications in both classical and quantum control problems. The purpose of this paper is two-fold. Firstly, the optimal control problem for a system varying on these Lie Groups, with cost that is quadratic in control is lifted to their Hamiltonian vector fields through the Maximum principle of optimal control and explicitly solved. Secondly, the control systems are integrated down to the level of the group to give the solutions for the optimal paths corresponding to the optimal controls. In addition it is shown here that integrating these equations on the Lie algebra su(2) gives simpler solutions than when these are integrated on the Lie algebra so(3).
Resumo:
This paper tackles the problem of computing smooth, optimal trajectories on the Euclidean group of motions SE(3). The problem is formulated as an optimal control problem where the cost function to be minimized is equal to the integral of the classical curvature squared. This problem is analogous to the elastic problem from differential geometry and thus the resulting rigid body motions will trace elastic curves. An application of the Maximum Principle to this optimal control problem shifts the emphasis to the language of symplectic geometry and to the associated Hamiltonian formalism. This results in a system of first order differential equations that yield coordinate free necessary conditions for optimality for these curves. From these necessary conditions we identify an integrable case and these particular set of curves are solved analytically. These analytic solutions provide interpolating curves between an initial given position and orientation and a desired position and orientation that would be useful in motion planning for systems such as robotic manipulators and autonomous-oriented vehicles.
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
In this paper, we discuss the problem of globally computing sub-Riemannian curves on the Euclidean group of motions SE(3). In particular, we derive a global result for special sub-Riemannian curves whose Hamiltonian satisfies a particular condition. In this paper, sub-Riemannian curves are defined in the context of a constrained optimal control problem. The maximum principle is then applied to this problem to yield an appropriate left-invariant quadratic Hamiltonian. A number of integrable quadratic Hamiltonians are identified. We then proceed to derive convenient expressions for sub-Riemannian curves in SE(3) that correspond to particular extremal curves. These equations are then used to compute sub-Riemannian curves that could potentially be used for motion planning of underwater vehicles.
Resumo:
Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded bang-bang solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed.
Resumo:
Let H ∈ C 2(ℝ N×n ), H ≥ 0. The PDE system arises as the Euler-Lagrange PDE of vectorial variational problems for the functional E ∞(u, Ω) = ‖H(Du)‖ L ∞(Ω) defined on maps u: Ω ⊆ ℝ n → ℝ N . (1) first appeared in the author's recent work. The scalar case though has a long history initiated by Aronsson. Herein we study the solutions of (1) with emphasis on the case of n = 2 ≤ N with H the Euclidean norm on ℝ N×n , which we call the “∞-Laplacian”. By establishing a rigidity theorem for rank-one maps of independent interest, we analyse a phenomenon of separation of the solutions to phases with qualitatively different behaviour. As a corollary, we extend to N ≥ 2 the Aronsson-Evans-Yu theorem regarding non existence of zeros of |Du| and prove a maximum principle. We further characterise all H for which (1) is elliptic and also study the initial value problem for the ODE system arising for n = 1 but with H(·, u, u′) depending on all the arguments.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Samples of glacial till deposited since the Little Ice Age (LIA) maximum by two glaciers, North Bogbre at Svartisen and Corneliussen-breen at Okstindan, northern Norway, were obtained from transects running from the current glacier snout to the LIA (c. AD 1750) limit. The samples were analysed to determine their sediment magnetic properties, which display considerable variability. Significant trends in some magnetic parameters are evident with distance from the glacier margin and hence length of subaerial exposure. Magnetic susceptibility (X) decreases away from the contemporary snout, perhaps due to the weathering of ferrimagnetic minerals into antiferromagnetic forms, although this trend is generally not statistically significant. Trends in the ratios of soft IRM/hard IRM which are statistically significant support this hypothesis, suggesting that antiferromagnetic minerals are increasing relative to ferrimagnetic minerals towards the LIA maximum. Backfield ratios (IRM -100 mT/SIRM) also display a significant and strong trend towards magnetically harder behaviour with proximity to the LIA maximum. Thus, by employing a chronosequence approach, it may be possible to use sediment magnetics data as a tool for reconstructing glacier retreat in areas where more traditional techniques, such as lichenometry, are not applicable.
Resumo:
It has been generally accepted that the method of moments (MoM) variogram, which has been widely applied in soil science, requires about 100 sites at an appropriate interval apart to describe the variation adequately. This sample size is often larger than can be afforded for soil surveys of agricultural fields or contaminated sites. Furthermore, it might be a much larger sample size than is needed where the scale of variation is large. A possible alternative in such situations is the residual maximum likelihood (REML) variogram because fewer data appear to be required. The REML method is parametric and is considered reliable where there is trend in the data because it is based on generalized increments that filter trend out and only the covariance parameters are estimated. Previous research has suggested that fewer data are needed to compute a reliable variogram using a maximum likelihood approach such as REML, however, the results can vary according to the nature of the spatial variation. There remain issues to examine: how many fewer data can be used, how should the sampling sites be distributed over the site of interest, and how do different degrees of spatial variation affect the data requirements? The soil of four field sites of different size, physiography, parent material and soil type was sampled intensively, and MoM and REML variograms were calculated for clay content. The data were then sub-sampled to give different sample sizes and distributions of sites and the variograms were computed again. The model parameters for the sets of variograms for each site were used for cross-validation. Predictions based on REML variograms were generally more accurate than those from MoM variograms with fewer than 100 sampling sites. A sample size of around 50 sites at an appropriate distance apart, possibly determined from variograms of ancillary data, appears adequate to compute REML variograms for kriging soil properties for precision agriculture and contaminated sites. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Actual energy paths of long, extratropical baroclinic Rossby waves in the ocean are difficult to describe simply because they depend on the meridional-wavenumber-to-zonal-wavenumber ratio tau, a quantity that is difficult to estimate both observationally and theoretically. This paper shows, however, that this dependence is actually weak over any interval in which the zonal phase speed varies approximately linearly with tau, in which case the propagation becomes quasi-nondispersive (QND) and describable at leading order in terms of environmental conditions (i.e., topography and stratification) alone. As an example, the purely topographic case is shown to possess three main kinds of QND ray paths. The first is a topographic regime in which the rays follow approximately the contours f/h(alpha c) = a constant (alpha(c) is a near constant fixed by the strength of the stratification, f is the Coriolis parameter, and h is the ocean depth). The second and third are, respectively, "fast" and "slow" westward regimes little affected by topography and associated with the first and second bottom-pressure-compensated normal modes studied in previous work by Tailleux and McWilliams. Idealized examples show that actual rays can often be reproduced with reasonable accuracy by replacing the actual dispersion relation by its QND approximation. The topographic regime provides an upper bound ( in general a large overestimate) of the maximum latitudinal excursions of actual rays. The method presented in this paper is interesting for enabling an optimal classification of purely azimuthally dispersive wave systems into simpler idealized QND wave regimes, which helps to rationalize previous empirical findings that the ray paths of long Rossby waves in the presence of mean flow and topography often seem to be independent of the wavenumber orientation. Two important side results are to establish that the baroclinic string function regime of Tyler and K se is only valid over a tiny range of the topographic parameter and that long baroclinic Rossby waves propagating over topography do not obey any two-dimensional potential vorticity conservation principle. Given the importance of the latter principle in geophysical fluid dynamics, the lack of it in this case makes the concept of the QND regimes all the more important, for they are probably the only alternative to provide a simple and economical description of general purely azimuthally dispersive wave systems.