14 resultados para markov random field
em CentAUR: Central Archive University of Reading - UK
Resumo:
Urban surveillance footage can be of poor quality, partly due to the low quality of the camera and partly due to harsh lighting and heavily reflective scenes. For some computer surveillance tasks very simple change detection is adequate, but sometimes a more detailed change detection mask is desirable, eg, for accurately tracking identity when faced with multiple interacting individuals and in pose-based behaviour recognition. We present a novel technique for enhancing a low-quality change detection into a better segmentation using an image combing estimator in an MRF based model.
Resumo:
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
Airborne lidar provides accurate height information of objects on the earth and has been recognized as a reliable and accurate surveying tool in many applications. In particular, lidar data offer vital and significant features for urban land-cover classification, which is an important task in urban land-use studies. In this article, we present an effective approach in which lidar data fused with its co-registered images (i.e. aerial colour images containing red, green and blue (RGB) bands and near-infrared (NIR) images) and other derived features are used effectively for accurate urban land-cover classification. The proposed approach begins with an initial classification performed by the Dempster–Shafer theory of evidence with a specifically designed basic probability assignment function. It outputs two results, i.e. the initial classification and pseudo-training samples, which are selected automatically according to the combined probability masses. Second, a support vector machine (SVM)-based probability estimator is adopted to compute the class conditional probability (CCP) for each pixel from the pseudo-training samples. Finally, a Markov random field (MRF) model is established to combine spatial contextual information into the classification. In this stage, the initial classification result and the CCP are exploited. An efficient belief propagation (EBP) algorithm is developed to search for the global minimum-energy solution for the maximum a posteriori (MAP)-MRF framework in which three techniques are developed to speed up the standard belief propagation (BP) algorithm. Lidar and its co-registered data acquired by Toposys Falcon II are used in performance tests. The experimental results prove that fusing the height data and optical images is particularly suited for urban land-cover classification. There is no training sample needed in the proposed approach, and the computational cost is relatively low. An average classification accuracy of 93.63% is achieved.
Resumo:
Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.
Resumo:
The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.
Resumo:
Rainfall can be modeled as a spatially correlated random field superimposed on a background mean value; therefore, geostatistical methods are appropriate for the analysis of rain gauge data. Nevertheless, there are certain typical features of these data that must be taken into account to produce useful results, including the generally non-Gaussian mixed distribution, the inhomogeneity and low density of observations, and the temporal and spatial variability of spatial correlation patterns. Many studies show that rigorous geostatistical analysis performs better than other available interpolation techniques for rain gauge data. Important elements are the use of climatological variograms and the appropriate treatment of rainy and nonrainy areas. Benefits of geostatistical analysis for rainfall include ease of estimating areal averages, estimation of uncertainties, and the possibility of using secondary information (e.g., topography). Geostatistical analysis also facilitates the generation of ensembles of rainfall fields that are consistent with a given set of observations, allowing for a more realistic exploration of errors and their propagation in downstream models, such as those used for agricultural or hydrological forecasting. This article provides a review of geostatistical methods used for kriging, exemplified where appropriate by daily rain gauge data from Ethiopia.
Resumo:
Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.
Resumo:
[1] Cloud cover is conventionally estimated from satellite images as the observed fraction of cloudy pixels. Active instruments such as radar and Lidar observe in narrow transects that sample only a small percentage of the area over which the cloud fraction is estimated. As a consequence, the fraction estimate has an associated sampling uncertainty, which usually remains unspecified. This paper extends a Bayesian method of cloud fraction estimation, which also provides an analytical estimate of the sampling error. This method is applied to test the sensitivity of this error to sampling characteristics, such as the number of observed transects and the variability of the underlying cloud field. The dependence of the uncertainty on these characteristics is investigated using synthetic data simulated to have properties closely resembling observations of the spaceborne Lidar NASA-LITE mission. Results suggest that the variance of the cloud fraction is greatest for medium cloud cover and least when conditions are mostly cloudy or clear. However, there is a bias in the estimation, which is greatest around 25% and 75% cloud cover. The sampling uncertainty is also affected by the mean lengths of clouds and of clear intervals; shorter lengths decrease uncertainty, primarily because there are more cloud observations in a transect of a given length. Uncertainty also falls with increasing number of transects. Therefore a sampling strategy aimed at minimizing the uncertainty in transect derived cloud fraction will have to take into account both the cloud and clear sky length distributions as well as the cloud fraction of the observed field. These conclusions have implications for the design of future satellite missions. This paper describes the first integrated methodology for the analytical assessment of sampling uncertainty in cloud fraction observations from forthcoming spaceborne radar and Lidar missions such as NASA's Calipso and CloudSat.
Resumo:
An attenuated strain (263) of the tick-borne encephalitis virus, isolated from field ticks, was either serially subcultured, 5 times in mice, or at 40 degrees C in PS cells, producing 2 independent strains, 263-m5 and 263-TR with identical genomes; both strains exhibited increased plaque size, neuroinvasiveness and temperature-resistance. Sequencing revealed two unique amino acid substitutions, one mapping close to the catalytic site of the viral protease. These observations imply that virus adaptation from ticks to mammals occurs by selection of pre-existing virulent variants from the quasispecies population rather than by the emergence of new random mutations. The significance of these observations is discussed. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The human electroencephalogram (EEG) is globally characterized by a 1/f power spectrum superimposed with certain peaks, whereby the "alpha peak" in a frequency range of 8-14 Hz is the most prominent one for relaxed states of wakefulness. We present simulations of a minimal dynamical network model of leaky integrator neurons attached to the nodes of an evolving directed and weighted random graph (an Erdos-Renyi graph). We derive a model of the dendritic field potential (DFP) for the neurons leading to a simulated EEG that describes the global activity of the network. Depending on the network size, we find an oscillatory transition of the simulated EEG when the network reaches a critical connectivity. This transition, indicated by a suitably defined order parameter, is reflected by a sudden change of the network's topology when super-cycles are formed from merging isolated loops. After the oscillatory transition, the power spectra of simulated EEG time series exhibit a 1/f continuum superimposed with certain peaks. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We review and structure some of the mathematical and statistical models that have been developed over the past half century to grapple with theoretical and experimental questions about the stochastic development of aging over the life course. We suggest that the mathematical models are in large part addressing the problem of partitioning the randomness in aging: How does aging vary between individuals, and within an individual over the lifecourse? How much of the variation is inherently related to some qualities of the individual, and how much is entirely random? How much of the randomness is cumulative, and how much is merely short-term flutter? We propose that recent lines of statistical inquiry in survival analysis could usefully grapple with these questions, all the more so if they were more explicitly linked to the relevant mathematical and biological models of aging. To this end, we describe points of contact among the various lines of mathematical and statistical research. We suggest some directions for future work, including the exploration of information-theoretic measures for evaluating components of stochastic models as the basis for analyzing experiments and anchoring theoretical discussions of aging.
Resumo:
Monte Carlo algorithms often aim to draw from a distribution π by simulating a Markov chain with transition kernel P such that π is invariant under P. However, there are many situations for which it is impractical or impossible to draw from the transition kernel P. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace P by an approximation Pˆ. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how ’close’ the chain given by the transition kernel Pˆ is to the chain given by P . We apply these results to several examples from spatial statistics and network analysis.