21 resultados para mappings of higher order
em CentAUR: Central Archive University of Reading - UK
Resumo:
We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.
Resumo:
Higher order cumulant analysis is applied to the blind equalization of linear time-invariant (LTI) nonminimum-phase channels. The channel model is moving-average based. To identify the moving average parameters of channels, a higher-order cumulant fitting approach is adopted in which a novel relay algorithm is proposed to obtain the global solution. In addition, the technique incorporates model order determination. The transmitted data are considered as independently identically distributed random variables over some discrete finite set (e.g., set {±1, ±3}). A transformation scheme is suggested so that third-order cumulant analysis can be applied to this type of data. Simulation examples verify the feasibility and potential of the algorithm. Performance is compared with that of the noncumulant-based Sato scheme in terms of the steady state MSE and convergence rate.
Resumo:
We report the single-crystal X-ray structure for the complex of the bisacridine bis-(9-aminooctyl(2-(dimethylaminoethyl)acridine-4-carboxamide)) with the oligonucleotide d(CGTACG)2 to a resolution of 2.4 Å. Solution studies with closed circular DNA show this compound to be a bisintercalating threading agent, but so far we have no crystallographic or NMR structural data conforming to the model of contiguous intercalation within the same duplex. Here, with the hexameric duplex d(CGTACG), the DNA is observed to undergo a terminal cytosine base exchange to yield an unusual guanine quadruplex intercalation site through which the bisacridine threads its octamethylene linker to fuse two DNA duplexes. The 4-carboxamide side-chains form anchoring hydrogen-bonding interactions with guanine O6 atoms on each side of the quadruplex. This higher-order DNA structure provides insight into an unexpected property of bisintercalating threading agents, and suggests the idea of targeting such compounds specifically at four-way DNA junctions.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
This article argues for a new theoretical paradigm for the analysis of change in educational institutions that is able to deal with such issues as readiness for change, transformational change and the failure of change strategies. Punctuated equilibrium (Tushman and Romanelli, 1985) is a theory which has wide application. It envisages long-term change as being made up of a succession of long periods of relative stability interspersed by brief periods of rapid profound change. In the periods of stability only relatively small incremental changes are possible. The periods of transformational change may be triggered by external or internal influences. A recent study of the long-term process of internationalisation in higher education institutions shows evidence to support the theory: long periods of incremental change, events precipitating profound change and the failure of externally imposed attempts to change. Also, as the theory predicts, changes in collegial organisations are slower and more uncertain than changes in managed organisations.
Resumo:
The capability of a feature model of immediate memory (Nairne, 1990; Neath, 2000) to predict and account for a relationship between absolute and proportion scoring of immediate serial recall when memory load is varied (the list-length effect, LLE) is examined. The model correctly predicts the novel finding of an LLE in immediate serial order memory similar to that observed with free recall and previously assumed to be attributable to the long-term memory component of that procedure (Glanzer, 1972). The usefulness of formal models as predictive tools and the continuity between short-term serial order and longer term item memory are considered.
Resumo:
Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.
Resumo:
New cyclic oligomers of dimesitylgermylene carbodiimides (Mes2GeNCN)n (n = 3 (1) and 4 (2)) were synthesized by reactions of dimesityldichlorogermane with either cyanamide in the presence of triethylamine or lithium cyanamide. The reactions always gave 1, the trimer of the hypothetical (Mes2GeN−CN), as the major compound. Higher oligomers 3 (n up to 20−30) also can be isolated, depending on the reaction conditions. In THF solution at room temperature, 2 and 3 slowly isomerize to 1, which seems to be the most stable compound. X-ray analysis of trimer 1 and tetramer 2 shows unstrained tetrahedral germanium atoms and linear diimine linkers.
Resumo:
We develop the essential ingredients of a new, continuum and anisotropic model of sea-ice dynamics designed for eventual use in climate simulation. These ingredients are a constitutive law for sea-ice stress, relating stress to the material properties of sea ice and to internal variables describing the sea-ice state, and equations describing the evolution of these variables. The sea-ice cover is treated as a densely flawed two-dimensional continuum consisting of a uniform field of thick ice that is uniformly permeated with narrow linear regions of thinner ice called leads. Lead orientation, thickness and width distributions are described by second-rank tensor internal variables: the structure, thickness and width tensors, whose dynamics are governed by corresponding evolution equations accounting for processes such as new lead generation and rotation as the ice cover deforms. These evolution equations contain contractions of higher-order tensor expressions that require closures. We develop a sea-ice stress constitutive law that relates sea-ice stress to the structure tensor, thickness tensor and strain rate. For the special case of empty leads (containing no ice), linear closures are adopted and we present calculations for simple shear, convergence and divergence.