8 resultados para manufacturing technology
em CentAUR: Central Archive University of Reading - UK
Resumo:
Purpose – The purpose of this paper is to demonstrate analytically how entrepreneurial action as learning relating to diversifying into technical clothing – i.e. a high-value manufacturing sector – can take place. This is particularly relevant to recent discussion and debate in academic and policy-making circles concerning the survival of the clothing manufacture industry in developed industrialised countries. Design/methodology/approach – Using situated learning theory (SLT) as the major analytical lens, this case study examines an episode of entrepreneurial action relating to diversification into a high-value manufacturing sector. It is considered on instrumentality grounds, revealing wider tendencies in the management of knowledge and capabilities requisite for effective entrepreneurial action of this kind. Findings – Boundary events, brokers, boundary objects, membership structures and inclusive participation that addresses power asymmetries are found to be crucial organisational design elements, enabling the development of inter- and intracommunal capacities. These together constitute a dynamic learning capability, which underpins entrepreneurial action, such as diversification into high-value manufacturing sectors. Originality/value – Through a refinement of SLT in the context of entrepreneurial action, the paper contributes to an advancement of a substantive theory of managing technological knowledge and capabilities for effective diversification into high-value manufacturing sectors.
Resumo:
The invention relates to immunoassays, methods for carrying out immunoassays, immunoassay kits and methods for manufacturing immunoassay kits. In particular, the invention has relevance to capillary (especially microcapillary) immunoassay technology.
Resumo:
In the ten years since the first edition of this book appeared there have been significant developments in food process engineering, notably in biotechnology and membrane application. Advances have been made in the use of sensors for process control, and the growth of information technology and on-line computer applications continues apace. In addition, plant investment decisions are increasingly determined by quality assurance considerations and have to incorporate a greater emphasis on health and safety issues. The content of this edition has been rearranged to include descriptions of recent developments and to reflect the influence of new technology on the control and operations of automated plant. Original examples have been retained where relevant and these, together with many new illustrations, provide a comprehensive guide to good practice.