6 resultados para management zone
em CentAUR: Central Archive University of Reading - UK
The impact of buffer zone size and management on illegal extraction, park protection and enforcement
Resumo:
Many protected areas or parks in developing countries have buffer zones at their boundaries to achieve the dual goals of protecting park resources and providing resource benefits to neighbouring people. Despite the prevalence of these zoning policies, few behavioural models of people’s buffer zone use inform the sizing and management of those zones. This paper uses a spatially explicit resource extraction model to examine the impact of buffer zone size and management on extraction by local people, both legal and illegal, and the impact of that extraction on forest quality in the park’s core and buffer zone. The results demonstrate trade-offs between the level of enforcement, the size of a buffer zone, and the amount of illegal extraction in the park; and describe implications for “enrichment” of buffer zones and evaluating patterns of forest degradation.
Resumo:
The unsaturated zone exerts a major control on the delivery of nutrients to Chalk streams, yet flow and transport processes in this complex, dual-porosity medium have remained controversial. A major challenge arises in characterising these processes, both at the detailed mechanistic level and at an appropriate level for inclusion within catchment-scale models for nutrient management. The lowland catchment research (LOCAR) programme in the UK has provided a unique set of comprehensively instrumented groundwater-dominated catchments. Of these, the Pang and Lambourn, tributaries of the Thames near Reading, have been a particular focus for research into subsurface processes and surface water-groundwater interactions. Data from LOCAR and other sources, along with a new dual permeability numerical model of the Chalk, have been used to explore the relative roles of matrix and fracture flow within the unsaturated zone and resolve conflicting hypotheses of response. From the improved understanding gained through these explorations, a parsimonious conceptualisation of the general response of flow and transport within the Chalk unsaturated zone was formulated. This paper summarises the modelling and data findings of these explorations, and describes the integration of the new simplified unsaturated zone representation with a catchment-scale model of nutrients (INCA), resulting in a new model for catchment-scale flow and transport within Chalk systems: INCA-Chalk. This model is applied to the Lambourn, and results, including hindcast and forecast simulations, are presented. These clearly illustrate the decadal time-scales that need to be considered in the context of nutrient management and the EU Water Framework Directive. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the results and conclusions of the INCA (Integrated Nitrogen Model for European CAtchments) project and sets the findings in the context of the ELOISE (European Land-Ocean Interaction Studies) programme. The INCA project was concerned with the development of a generic model of the major factors and processes controlling nitrogen dynamics in European river systems, thereby providing a tool (a) to aid the scientific understanding of nitrogen transport and retention in catchments and (b) for river-basin management and policy-making. The findings of the study highlight the heterogeneity of the factors and processes controlling nitrogen dynamics in freshwater systems. Nonetheless, the INCA model was able to simulate the in-stream nitrogen concentrations and fluxes observed at annual and seasonal timescales in Arctic, Continental and Maritime-Temperate regimes. This result suggests that the data requirements and structural complexity of the INCA model are appropriate to simulate nitrogen fluxes across a wide range of European freshwater environments. This is a major requirement for the production of coupled fiver-estuary-coastal shelf models for the management of our aquatic environment. With regard to river-basin management, to achieve an efficient reduction in nutrient fluxes from the land to the estuarine and coastal zone, the model simulations suggest that management options must be adaptable to the prevailing environmental and socio-economic factors in individual catchments: 'Blanket approaches' to environmental policy appear too simple. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the development and validation of a novel web-based interface for the gathering of feedback from building occupants about their environmental discomfort including signs of Sick Building Syndrome (SBS). The gathering of such feedback may enable better targeting of environmental discomfort down to the individual as well as the early detection and subsequently resolution by building services of more complex issues such as SBS. The occupant's discomfort is interpreted and converted to air-conditioning system set points using Fuzzy Logic. Experimental results from a multi-zone air-conditioning test rig have been included in this paper.
Resumo:
More than half of global soil carbon is stored as carbonates, primarily in arid and semi-arid zones. Climate change models predict more frequent and severe rainfall events in some parts of the globe, many of which are dominated by calcareous soils. Such events trigger substantial increases in soil CO2 efflux. We hypothesised that the primary source of CO2 emissions from calcareous, arid zone soil during a single wetting event is abiotic and that soil acidification and wetting have a positive, potentially interacting, effect. We manipulated soil pH, soil moisture, and controlled soil respiration by gamma irradiating half of an 11 day incubation experiment. All manipulated experimental treatments had a rapid and enormous effect on CO2 emission. Respiration contributed ca. 5% of total CO2 efflux; the major source (carbonate buffering) varied depending on the extent of acidification and wetting. Maximum CO2 efflux occurred when pH was lowest and at intermediate matric potential. CO2 efflux was lowest at native pH when soil was air dry. Our data suggest that there may be an underestimate of soil-atmosphere carbon fluxes in arid ecosystems with calcareous soils. There is also a clear potential that these soils may become net carbon sources depending on changes in rainfall patterns, rainfall acidity, and future land management. Our findings have major implications for carbon cycling in arid zone soil and further study of carbon dynamics in these terrestrial systems at a landscape level will be required if we are to improve global climate and carbon cycling models.