15 resultados para magnesium deficiency

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc deficiency is the most ubiquitous micronutrient deficiency problem in world crops. Zinc is essential for both plants and animals because it is a structural constituent and regulatory co-factor in enzymes and proteins involved in many biochemical pathways. Millions of hectares of cropland are affected by Zn deficiency and approximately one-third of the human population suffers from an inadequate intake of Zn. The main soil factors affecting the availability of Zn to plants are low total Zn contents, high pH, high calcite and organic matter contents and high concentrations of Na, Ca, Mg, bicarbonate and phosphate in the soil solution or in labile forms. Maize is the most susceptible cereal crop, but wheat grown on calcareous soils and lowland rice on flooded soils are also highly prone to Zn deficiency. Zinc fertilizers are used in the prevention of Zn deficiency and in the biofortification of cereal grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative zinc (Zn) efficiencies of 33 wheat and 3 barley cultivars were determined by growing them in chelate-buffered culture solutions. Zn efficiency, determined by growth in a Zn-deficient solution relative to that in a medium containing an adequate concentration of Zn, was found to vary between 10% and 63% among the cultivars tested. Out of the 36 cultivars tested, 12 proved to be Zn efficient, 10 were Zn inefficient, and the remaining 14 varieties were classed as intermediate. The most Zn-efficient cultivars included Bakhtawar, Gatcher S61, Wilgoyne, and Madrigal, and the most Zn inefficient included Durati, Songlen, Excalibur, and Chakwal-86. Zn-efficient cultivars accumulated greater amounts of Zn in their shoots than inefficient cultivars, but the correlation between shoot Zn and shoot dry matter production was poor. All the cultivars accumulated higher concentrations of iron (Fe), copper (Cu), manganese (Mn), and phosphorus (P) at deficient levels of Zn, compared with adequate Zn concentrations. The Zn-inefficient cultivars accumulated higher concentrations of these other elements compared to efficient cultivars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of endemic goitre in England and Wales was compared with the distribution of environmental iodine (atmospheric deposition, soil, surface water). Despite a very clear goitre belt through the west of England and Wales there was no patterning in the environmental iodine distribution. A clear seasonal variation in depositional iodine exists, with an unusually high concentration of iodine in March 1997. The temporal variation in iodine concentration is determined at the monthly and not the annual level. The presence of endemic goitre is no indicator of how iodine is distributed in the environment or vice versa!

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid economic growth in China has resulted in substantially improved household incomes. Diets have also changed, with a movement away from traditional foods and towards animal products and processed foods. Yet micronutrient deficiencies, particularly for calcium and vitamin A, are still widespread in China. In this research we model the determinants of the intakes of these micronutrients using household panel data, asking particularly whether continuing income increases are likely to cause the deficiencies to be overcome. Nonparametric kernel regressions and random effects panel regression models are employed. The results show a statistically significant but relatively small positive income effect on both nutrient intakes. The local availability of milk is seen to have a strong positive effect on intakes of both micronutrients. Thus, rather than relying on increasing incomes to overcome deficiencies, supplementary government policies, such as school milk programmes, may be warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytic acid (PA) is the main phosphorus storage compound in cereals, legumes and oil seeds. In human populations where phytate-rich cereals such as wheat, maize and rice are a staple food, phytate may lead to mineral and trace element deficiency. Zinc appears to be the trace element whose bioavailability is most influenced by PA. Furthermore, several studies in humans as well as in monogastric animals clearly indicate an inhibition of non-haem iron absorption at marginal iron supply due to phytic acid. In fact PA seems to be, at least partly, responsible for the low absorption efficiency and high incidence of iron deficiency anaemia evident in most developing countries, where largely vegetarian diets are consumed Microbial phytases have provided a realistic means of improving mineral availability from traditionally high-phytate diets. In fact it has been consistently shown that Aspergillus phytases significantly enhance the absorption of calcium, magnesium and zinc in pigs and rats. Furthermore there are a few studies in humans indicating an improvement of iron bioavailability due to microbial phytase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Et3NH]4[Mo8O26] reacted with MgCl2 giving the triethylammonum magnesium β-octamolybdate(VI) salt [Et3NH]2[Mg(H2O)6Mo8O26]·2H2O (3) and the triethylammonium hydronium β-octaamolybdate(VI) salt [Et3NH]3[(H3O)Mo8O26·2H2O (4), respectively. A small amount of [Et3NH]2[Mo6O269] was formed as a by-product. The salts 3 and 4 were characterized by X-ray crystallography. The [Mg(H2O)6Mo8O26]2− moiety in 3 is polymeric, with each octahedral [Mg(H2O)6]2+ ion sandwiched between two β[Mo8O26]4− ions, being hydrogen bonded to three terminal MOO oxygen atoms on one face of each β[Mo8O26]4− ion. The X-ray crystal structure of 4 corresponds to the reported previously. IR and conductivity data are given for 3 and 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corneal blindness caused by limbal stem cell deficiency (LSCD) is a prevailing disorder worldwide. Clinical outcomes for LSCD therapy using amniotic membrane (AM) are unpredictable. Hydrogels can eliminate limitations of standard therapy for LSCD, because they present all the advantages of AM (i.e. biocompatibility, inertness and a biodegradable structure) but unlike AM, they are structurally uniform and can be easily manipulated to alter mechanical and physical properties. Hydrogels can be delivered with minimum trauma to the ocular surface and do not require extensive serological screening before clinical application. The hydrogel structure is also amenable to modifications which direct stem cell fate. In this focussed review we highlight hydrogels as biomaterial substrates which may replace and/or complement AM in the treatment of LSCD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium (Ca) and magnesium (Mg) are the most abundant group II elements in both plants and animals. Genetic variation in shoot Ca and shoot Mg concentration (shoot Ca and Mg) in plants can be exploited to biofortify food crops and thereby increase dietary Ca and Mg intake for humans and livestock. We present a comprehensive analysis of within-species genetic variation for shoot Ca and Mg, demonstrating that shoot mineral concentration differs significantly between subtaxa (varietas). We established a structured diversity foundation set of 376 accessions to capture a high proportion of species-wide allelic diversity within domesticated Brassica oleracea, including representation of wild relatives (C genome, 1n = 9) from natural populations. These accessions and 74 modern F-1 hybrid cultivars were grown in glasshouse and field environments. Shoot Ca and Mg varied 2- and 2.3-fold, respectively, and was typically not inversely correlated with shoot biomass, within most subtaxa. The closely related capitata (cabbage) and sabauda (Savoy cabbage) subtaxa consistently had the highest mean shoot Ca and Mg. Shoot Ca and Mg in glasshouse-grown plants was highly correlated with data from the field. To understand and dissect the genetic basis of variation in shoot Ca and Mg, we studied homozygous lines from a segregating B. oleracea mapping population. Shoot Ca and Mg was highly heritable (up to 40). Quantitative trait loci (QTL) for shoot Ca and Mg were detected on chromosomes C2, C6, C7, C8, and, in particular, C9, where QTL accounted for 14 to 55 of the total genetic variance. The presence of QTL on C9 was substantiated by scoring recurrent backcross substitution lines, derived from the same parents. This also greatly increased the map resolution, with strong evidence that a 4-cM region on C9 influences shoot Ca. This region corresponds to a 0.41-Mb region on Arabidopsis (Arabidopsis thaliana) chromosome 5 that includes 106 genes. There is also evidence that pleiotropic loci on C8 and C9 affect shoot Ca and Mg. Map-based cloning of these loci will reveal how shoot-level phenotypes relate to Ca 21 and Mg 21 uptake and homeostasis at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Phosphorus (P) is an essential macronutrient for plants. Plants take up P as phosphate (Pi) from the soil solution. Since little Pi is available in most soils, P fertilizers are applied to crops. However, the use of P fertilizers is unsustainable and may cause pollution. Consequently, there is a need to develop more P-use-efficient (PUE) crops and precise methods to monitor crop P-status. Scope: Manipulating the expression of genes to improve the PUE of crops could reduce their P fertilizer requirement. This has stimulated research towards the identification of genes and signalling cascades involved in plant responses to P deficiency. Genes that respond to P deficiency can be grouped into 'early' genes that respond rapidly and often non-specifically to P deficiency, or 'late' genes that impact on the morphology, physiology or metabolism of plants upon Prolonged P deficiency. Summary: The use of micro-array technology has allowed researchers to catalogue the genetic responses of plants to P deficiency. Genes whose expression is altered by P deficiency include various transcription factors, which are thought to coordinate plant responses to P deficiency, and other genes involved in P acquisition and tissue P economy. Several common cis-regulatory elements have been identified in the promoters of these genes, suggesting that their expression might be coordinated. It is suggested that knowledge of the genes whose expression changes in response to P deficiency might allow the development of crops with improved PUE, and could be used in diagnostic techniques to monitor P deficiency in crops either directly using 'smart' indicator plants or indirectly through transcript profiling. The development of crops with improved PUE and the adoption of diagnostic technology could reduce production costs, minimize the use of a non-renewable resource, reduce pollution and enhance biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the physiological and transcriptional levels. A Zn-deficiency-tolerant line RIL46 acquires Zn more efficiently and produces more biomass than its nontolerant maternal line (IR74) at low Zn(ext) under field conditions. We tested if this was the result of increased expression of Zn(2+) transporters; increased root exudation of deoxymugineic acid (DMA) or low-molecular-weight organic acids (LMWOAs); and/or increased root production. Experiments were performed in field and controlled environment conditions. There was little genotypic variation in transcript abundance of Zn-responsive root Zn(2+)-transporters between the RIL46 and IR74. However, root exudation of DMA and LMWOA was greater in RIL46, coinciding with increased root expression of putative ligand-efflux genes. Adventitious root production was maintained in RIL46 at low Zn(ext), correlating with altered expression of root-specific auxin-responsive genes. Zinc-deficiency tolerance in RIL46 is most likely the result of maintenance of root growth, increased efflux of Zn ligands, and increased uptake of Zn-ligand complexes at low Zn(ext); these traits are potential breeding targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a combination of ab initio calculations and statistical mechanics to investigate the substitution of Li+ for Mg2+ in magnesium hydride (MgH2) accompanied by the formation of hydrogen vacancies with positive charge (with respect to the original ion at the site). We show that the binding energy between dopants and vacancy defects leads to a significant fraction of trapped vacancies and therefore a dramatic reduction in the number of free vacancies available for diffusion. The concentration of free vacancies initially increases with dopant concentration but reaches a maximum at around 1 mol % Li doping and slowly decreases with further doping. At the optimal level of doping, the corresponding concentration of free vacancies is much higher than the equilibrium concentrations of charged and neutral vacancies in pure MgH2 at typical hydrogen storage conditions. We also show that Li-doped MgH2 is thermodynamically metastable with respect to phase separation into pure magnesium and lithium hydrides at any significant Li concentration, even after considering the stabilization provided by dopant-vacancy interactions and configurational entropic effects. Our results suggest that lithium doping may enhance hydrogen diffusion hydride but only to a limited extent determined by an optimal dopant concentration and conditioned to the stability of the doped phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our study on white European adults was consistent with a previous study on children from largely non-white ethnic groups, suggesting that IL4 and MS4A2 genotypes modify the association between VDD and allergy risk. The risk allele in IL4 is present in nearly 90% of white Europeans, while less than a quarter are carriers in some other populations, highlighting the need to consider possible ethnic differences in allergy-related responsiveness to VDD.