8 resultados para macrophyte

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation-environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates phosphorus (P) transport and transformation dynamics in two contrasting sub-catchments of the River Kennel, England. Samples were collected daily under baseflow and hourly under stormflow conditions using autosamplers for 2 years and analysed for a range of determinands (full P fractionation, suspended sediment (SS), cations, pH, alkalinity, temperature and oxygen). Concentrations of SRP, SUP, PP and SS were higher in the flashy River Enborne (means of 0.186, 0.071, 0.101 and 34 mg l(-1), respectively) than the groundwater-fed River Lambourn (0.079, 0.057, 0.028 and 9 mg l(-1), respectively). A seasonal trend in the daily P dataset was evident, with lower concentrations during intermediate flows and the spring (caused by a dilution effect and macrophyte uptake) than during baseflow conditions. However, in the hourly P dataset, highest concentrations were observed during storm events in the autumn and winter (reflecting higher scour with increased capacity to entrain particles). Storm events were more significant in contributing to the total P load in the River Enborne than the River Lambourn, especially during August to October, when dry antecedent conditions were observed in the catchment. Re-suspension of P-rich sediment that accumulated within the channel during summer low flows might account for these observations. It is suggested that a P-calcite co-precipitation mechanism was operating during summer in the River Lambourn, while adsorption by metal oxyhydroxide groups was an important mechanism controlling P fractionation in the River Enborne. The influence of flow conditions and channel storage/release mechanisms on P dynamics in these two lowland rivers is assessed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ramsar site of Lake Uluabat, western Turkey, suffers from eutrophication, urban and industrial pollution and water abstraction, and its water levels are managed artificially. Here we combine monitoring and palaeolimnological. techniques to investigate spatial and temporal limnological variability and ecosystem impact, using an ostracod and mollusc survey to strengthen interpretation of the fossil record. A combination of low invertebrate Biological Monitoring Working Party scores (<10) and the dominance of eutrophic diatoms in the modern lake confirms its poor ecological status. Palaeolimnological analysis of recent (last >200 yr) changes in organic and carbonate content, diatoms, stable isotopes, ostracods and molluscs in a lake sediment core (UL20A) indicates a 20th century trend towards increased sediment accumulation rates and eutrophication which was probably initiated by deforestation and agriculture. The most marked ecological shift occurs in the early 1960s, however. A subtle rise in diatom-inferred total phosphorus and an inferred reduction in submerged aquatic macrophyte cover accompanies a major increase in sediment accumulation rate. An associated marked shift in ostracod stable isotope data indicative of reduced seasonality and a change in hydrological input suggests major impact from artificial water management practices, all of which appears to have culminated in the sustained loss of submerged macrophytes since 2000. The study indicates it is vital to take both land-use and water management practices into account in devising restoration strategies. in a wider context, the results have important implications for the conservation of shallow karstic lakes, the functioning of which is still poorly understood. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model, applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups, however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A great deal of work recently has focused on suspended and bedload sediment transport, driven primarily by interest in contaminant transfer. However, uncertainties regarding the role of storm events, macrophyte beds and interactions between the two phases of sediment still exist. This paper compares two study sites within the same catchment whose geology varies significantly. The differences in hydrology, suspended sediment (SS) transport and bed load transport that this causes are examined. In addition, a method to predict the mobilization of different size fractions of sediment during given flows is investigated using critical entrainment thresholds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explored the potential for using Pediastrum (Meyen), a genus of green alga commonly found in palaeoecological studies, as a proxy for lake-level change in tropical South America. The study site, Laguna La Gaiba (LLG) (17°45′S, 57°40′W), is a broad, shallow lake located along the course of the Paraguay River in the Pantanal, a 135,000-km2 tropical wetland located mostly in western Brazil, but extending into eastern Bolivia. Fourteen surface sediment samples were taken from LLG across a range of lake depths (2-5.2 m) and analyzed for Pediastrum. We found seven species, of which P. musteri (Tell et Mataloni), P. argentiniense (Bourr. et Tell), and P. cf. angulosum (Ehrenb.) ex Menegh. were identified as potential indicators of lake level. Results of the modern dataset were applied to 31 fossil Pediastrum assemblages spanning the early Holocene (12.0 kyr BP) to present to infer past lake level changes qualitatively. Early Holocene (12.0-9.8 kyr BP) assemblages do not show a clear signal, though abundance of P. simplex (Meyen) suggests relatively high lake levels. Absence of P. musteri, characteristic of deep, open water, and abundance of macrophyte-associated taxa indicate lake levels were lowest from 9.8 to 3.0 kyr BP. A shift to wetter conditions began at 4.4 kyr BP, indicated by the appearance of P. musteri, though inferred lake levels did not reach modern values until 1.4 kyr BP. The Pediastrum-inferred mid-Holocene lowstand is consistent with lower precipitation, previously inferred using pollen from this site, and is also in agreement with evidence for widespread drought in the South American tropics during the middle Holocene. An inference for steadily increasing lake level from 4.4 kyr BP to present is consistent with diatom-inferred water level rise at Lake Titicaca, and demonstrates coherence with the broad pattern of increasing monsoon strength from the late Holocene until present in tropical South America.