4 resultados para macroeconomic model
em CentAUR: Central Archive University of Reading - UK
Resumo:
Bayesian Model Averaging (BMA) is used for testing for multiple break points in univariate series using conjugate normal-gamma priors. This approach can test for the number of structural breaks and produce posterior probabilities for a break at each point in time. Results are averaged over specifications including: stationary; stationary around trend and unit root models, each containing different types and number of breaks and different lag lengths. The procedures are used to test for structural breaks on 14 annual macroeconomic series and 11 natural resource price series. The results indicate that there are structural breaks in all of the natural resource series and most of the macroeconomic series. Many of the series had multiple breaks. Our findings regarding the existence of unit roots, having allowed for structural breaks in the data, are largely consistent with previous work.
Resumo:
What does the saving–investment (SI) relation really measure and how should the SI relation be measured? These are two of the most discussed issues triggered by the so-called Feldstein–Horioka puzzle. Based on panel data we introduce a new variant of functional coefficient models that allows to separate long and short to medium run parameter dependence. The new modeling framework is applied to uncover the determinants of the SI relation. Macroeconomic state variables such as openness, the age dependency ratio, government current and consumption expenditures are found to affect the SI relation significantly in the long run.
Resumo:
This article applies a three-regime Markov switching model to investigate the impact of the macroeconomy on the dynamics of the residential real estate market in the US. Focusing on the period between 1960 and 2011, the methodology implemented allows for a clearer understanding of the drivers of the real estate market in “boom”, “steady-state” and “crash” regimes. Our results show that the sensitivity of the real estate market to economic changes is regime-dependent. The paper then proceeds to examine whether policymakers are able to influence a regime switch away from the crash regime. We find that a decrease in interest rate spreads could be an effective catalyst to precipitate such a change of state.
Resumo:
Real estate securities have a number of distinct characteristics that differentiate them from stocks generally. Key amongst them is that under-pinning the firms are both real as well as investment assets. The connections between the underlying macro-economy and listed real estate firms is therefore clearly demonstrated and of heightened importance. To consider the linkages with the underlying macro-economic fundamentals we extract the ‘low-frequency’ volatility component from aggregate volatility shocks in 11 international markets over the 1990-2014 period. This is achieved using Engle and Rangel’s (2008) Spline-Generalized Autoregressive Conditional Heteroskedasticity (Spline-GARCH) model. The estimated low-frequency volatility is then examined together with low-frequency macro data in a fixed-effect pooled regression framework. The analysis reveals that the low-frequency volatility of real estate securities has strong and positive association with most of the macroeconomic risk proxies examined. These include interest rates, inflation, GDP and foreign exchange rates.