98 resultados para luminescence Ir(III)-complexes cyclometallation azole-ligands

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two linear, trinuclear mixed-valence complexes, [Co-II{(mu-L-1)(mu-OAc)Co-III (OAc)}(2)] (1) and [Co-II(mu-L-2) (mu-OAc)Co-III(OAc)}(2)] (2) and two mononuclear Con' complexes [Co-III{L-3)(OAc)] (3), and [Co-III {L-4}(OAc)] (4) were prepared and the molecular structures of 1, 2 and 4 elucidated on the basis of X-ray crystallography [OAc = Acetate ion, H2L1 = H(2)Salen 1,6-bis(2-hydroxyphenyl)-2,5-diazahexa-1,5-diene, H2L2 H2Me2-Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene, H2L3 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta1,6-diene, H2L4 = H(2)Me(2)Salpn = 2,8-bis(2-hydroxyphenyl)3,7-diazanona-2,7-dienel. In complexes I and 2, the acetate groups show both monodentate and bridging bidentate coordination modes, whereas chelating bidentate acetate is present in 4. The terminal (CoN2O4)-N-III centres in 1 and 2 exhibit uniform facial arrangements of both non-bridged N2O and bridging O-3 donor sets and the Co-II centre is coordinated to six (four phenoxo and two acetato) oxygen atoms of the bridging ligands. The effective magnetic moment at room temperature corresponds to the presence of high-spin Coll in both 1 and 2. The complexes 1 and 2 are thus Co-III(S = 0)Co-II(S = 3/2)-Co-II(S = 0) trimers. Complexes 3 and 4 are monomeric and diamagnetic containing low-spin Co-III(S = 0) with chelating tetradentate Schiff base and bidentate acetate. Calculations based on DFT rationalise the formation of trinuclear or monomiclear complexes. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH(2)) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH(2)) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [Co(III)(dmoInH)(2)]Cl center dot 2H(2)O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [Co(III)(dmoInH) (2)]Cl center dot 2H(2)O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [Co(III)(d-moBH)(2)] Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH(2), compared to dmoBH(2), in the solid state. Comparing the structure of the [CoIII(dmoInH)(2)]Cl center dot 2H(2)O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of ruthenium (III) complexes of tetradentate monobasic NSNO donor chelators (HL) have been synthesized and isolated in their pure form. On chromatographic separation, trans-dichloro and cis-dichloro ruthenium (111) complexes of pyridylthioazophenolates are eluted using 19:1 and 7:3 (v/v) DCM-MeOH mixtures, respectively. Both cis and trans isomers of the dark brown colored ruthenium (111) complexes, having the general formula of [Ru(L)Cl-2], have been characterized by elemental analyses, spectroscopic and other physico-chemical tools. The magnetic moments of both the cis- and trans-[Ru(L)Cl-2] complexes are in the range of 1.71-1.79 BM. One of the complexes, trans-[Ru(L1)Cl-2] (2a), has been subjected to single-crystal X-ray analysis which confirms that the chlorines are in mutually trans positions in the molecule. The EPR spectra of the cis-[Ru(L)Cl-2] complexes (1) in DMF are consistent with the fact that the complexes are low-spin octahedral with one unpaired electron having three different g values (g(x) not equal g(y) not equal g(z)) complexes are monomeric with an octahedral coordination sphere. The electrochemical studies of [Ru(L)Cl,] in DMF show a quasi-reversible voltammogram. The reduction potentials for the cis-isomers are comparatively lower than those of the corresponding trans isomers. On reaction with the bidentate bipyridyl ligand in the presence of AgNO3, the cis-[Ru(L)Cl-2] complexes (1) produce a series of complexes with the general formula [Ru(L)(bpy)(2)](PF6)(2) (3). which have also been characterized by elemental analyses, spectroscopic and other physico-chemical tools. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction between [Mo(eta(3)-C3H5)(CO)(2)(NCMe)(2)Br] (1) and the ferrocenylamidobenzimidazole ligands FcCO(NH(2)benzim) (L1) and (FcCO)(2)(NHbenzim) (L2) led to a binuclear (2) and a trinuclear (3) Mo-Fe complex, respectively. The single-crystal X-ray structure of [Mo(eta(3)-C3H5)(CO)(2)(L2)Br] [L2 = {[(eta(5)-C5H5)Fe(eta(5)-C5H4CO)](2)(2-NH-benzimidazol-yl)}] shows that L2 is coordinated to the endo Mo(eta(3)-C3H5)(CO)(2) group in a kappa(2)-N,O-bidentate chelating fashion whereas the Mo-II centre displays a pseudooctahedral environment with Br occupying an equatorial position. Complex 2 was formulated as [MO(eta(3)-C3H5)(CO)(2)(L1)Br] on the basis of a combination of spectroscopic data, elemental analysis, conductivity and DFT calculations. L1 acts as a kappa(2)-N,N-bidentate ligand. In both L1 and L2, the HOMOs are mainly localised on iron while the C=O bond(s) contribute to the LUMO(s) and the next highest energy orbitals are Fe-allyl antibonding orbitals. When the ligands bind to Mo(eta(3)-C3H5)(CO)(2)Br, the greatest difference is that Mo becomes the strongest contributor to the HOMO. Electrochemical studies show that, in complex 2, no electronic interaction exists between the two ferrocenyl ligands and that the first electron has been removed from the Mo-II-centred HOMO. (c) Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[VIVO(acac)(2)] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [(VO)-O-V(L-1)(OCH3)(py)] (1) and [(VO)-O-V(L-2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [(VO)-O-V(L-3/L-4)(OCH3)](2) complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their H-1 NMR spectra. These quaternary VO3+ complexes are converted to the corresponding V2O34+-complexes simply on refluxing them in acetone and to the VO2+-complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [(VO)-O-V(L)(hq)] complexes in CHCl3. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex [Ru(C&3bond; CC&3bond; N)(dppe)Cp*] (1) is readily obtained (ca. 70%) from the sequential reaction of [Ru(C=CH2)(dppe)Cp*]PF6 with (BuLi)-Bu-n and phenyl cyanate. The complex behaves as a typical transition metal acetylide upon reaction with tetracyanoethene, affording a metallated pentacyanobutadiene. Complex I is a useful metalloligand, and its reactions with [W(thf)(CO)5], [RuCl(PPh3)(2)Cp], [RuCl(dppe)Cp*] or cis-[RuCl2(dppe)(2)] all afforded products featuring the M-C&3bond; CC&3bond; N-M' motif, for which ground state structures indicate a degree of polarisation. Electrochemical and spectroelectrochemical studies reveal moderate interactions between the metal centres in the 35-electron dications [{Cp*(dppe)Ru}(mu-C&3bond; CC&3bond; N){RuL2Cp'}](2+) Ru(PPh3)(2)CP, Ru(dppe)Cp*).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co(NH3)(5)Cl]Cl-2 forms neutral 1:3 complex by reaction with aromatic thiohydrazides, i.e. thiobenzhydrazide, o-hydroxythiobenzhydrazide, thiophen-2-thiohydrazide and furan-2-thiohydrazide. All these complexes are diamagnetic and have been characterized by elemental analysis and combination of spectroscopic methods. Cyclic voltammometry of the complexes shows irreversible metal centered and ligand centered electron transfer reactions. One complex, tris-o-hydroxythiobenzhydrazidocobalt(III),has been crystallized from DMSO solution to produce solvated crystals and its structure has been established by X-ray crystallography. Cobalt(III) ion is linked through three hydrazinic nitrogen and three sulfur atoms of three identical deprotonated ligand molecules in a distorted octahedral environment. Involvement of -OH group in intramolecular and intermolecular hydrogen bonding is crucial for crystal formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Ru2(μ-O2CCH3)4Cl] reacts readily with aqueous Ag2SO4 (2: 1 molar ratio) to give the sulphate salt [Ru2(μ-O2CCH3)4(H2O)2]2(SO4) (1). Addition of NaBPh4 to an aqueous solution of 1 produces the ether-soluble tetraphenylborate salt [Ru2(μ-O2CCH3)4(H2O)2][BPh4] (2). A methanolic solution of 1 reacts with Ba(C6H5CCCO2)2 · H2O to give the tetraacetatemonophenylpropynoate complex [Ru2(μ-O2CCH3)4(O2CCCC6H5)] · H2O (3). The reaction of an ethanolic suspension of [Ru2(μ-O2CC6H5)4Cl] with Ag2SO4 and H2SO4 (2 : 1 : 1 molar ratio) leads to the tetra-μ-benzoatodiruthenium(II,III) double complex salt [Ru2(μ-O2CC6H5)4(C2H5OH)2][Ru2(μ-O2CC6H5)4(HSO4)2] (4). Complex 4 is also obtained by reacting an ethanolic solution of 1 with an excess of benzoic acid in the presence of H2SO4. The X-ray crystal structure of 4 shows it to consist of [Ru2(μ-O2CC6H5)4(C2H5OH)2]+ and [Ru2(μ-O2CC6H5)4(HSO4)2]− ions, which are linked together by hydrogen bonds into an infinite polymeric chain. The RuRu distances in the cation and anion are very similar [2.265(2) and 2.272(2) Å, respectively]. Spectroscopic, magnetic, conductivity and cyclic voltammetry data are given for the complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of salicylaldehyde semicarbazone (L-1), 2-hydroxyacetophenone semicarbazone (L-2), and 2-hydroxynaphthaldehyde semicarbazone (L-3) with [Pd(PPh3)(2)Cl-2] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1a, 1b and 1c, respectively). In these complexes the semicarbazone ligands are coordinated to palladium in a rather unusual tridentate ONN-mode, and a PPh3 also remains coordinated to the metal center. Crystal structures of the 1b and 1c complexes have been determined, and structure of 1a has been optimized by a DFT method. In these complexes two potential donor sites of the coordinated semicarbazone, viz. the hydrazinic nitrogen and carbonylic oxygen, remain unutilized. Further reaction of these palladium complexes (1a, 1b and 1c) with [Ru(PPh3)(2)(CO)(2)Cl-2] yields a family of orange complexes (2a, 2b and 2c, respectively). In these heterodinuclear (Pd-Ru) complexes, the hydrazinic nitrogen (via dissociation of the N-H proton) and the carbonylic oxygen from the palladium-containing fragment bind to the ruthenium center by displacing a chloride and a carbonyl. Crystal structures of 2a and 2c have been determined, and the structure of 2b has been optimized by a DFT method. All the complexes show characteristic H-1 NMR spectra and, intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on all the complexes shows an irreversible oxidation of the coordinated semicarbazone within 0.86-0.93 V vs. SCE, and an irreversible reduction of the same ligand within -0.96 to -1.14 V vs. SCE. Both the mononuclear (1a, 1b and 1c) and heterodinuclear (2a, 2b and 2c) complexes are found to efficiently catalyze Suzuki, Heck and Sonogashira type C-C coupling reactions utilizing a variety of aryl bromides and aryl chlorides. The Pd-Ru complexes (2a, 2b and 2c) are found to be better catalysts than the Pd complexes (1a, 1b and 1c) for Suzuki and Heck coupling reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of of (R,R)-N,N-salicylidene cyclohexane 1,2-diamine(H(2)L(1)) in methanol with aqueous NH(4)VO(3) solution in perchloric acid medium affords the mononuclear oxovanadium(V) complex [VOL(1)(MeOH)]-ClO(4) (1) as deep blue solid while the treatment of same solution of (R,R)-N,N-salicylidene cyclohexane 1,2-diamine(H(2)L(1)) with aqueous solution of VOSO(4) leads to the formation of di-(mu-oxo) bridged vanadium(V) complex [VO(2)L(2)](2) (2) as green solid where HL(2) = (R,R)-N-salicylidene cyclohexane 1,2-diamine. The ligand HL(2) is generated in situ by the hydrolysis of one of the imine bonds of HL(1) ligand during the course of formation of complex [VO(2)L(2)](2) (2). Both the compounds have been characterized by single crystal X-ray diffraction as well as spectroscopic methods. Compounds 1 and 2 are to act as catalyst for the catalytic bromide oxidation and C-H bond oxidation in presence of hydrogen peroxide. The representative substrates 2,4-dimethoxy benzoic acid and para-hydroxy benzoic acids are brominated in presence of H(2)O(2) and KBr in acid medium using the above compounds as catalyst. The complexes are also used as catalyst for C-H bond activation of the representative hydrocarbons toluene, ethylbenzene and cyclohexane where hydrogen peroxide acts as terminal oxidant. The yield percentage and turnover number are also quite good for the above catalytic reaction. The oxidized products of hydrocarbons have been characterized by GC Analysis while the brominated products have been characterized by (1)H NMR spectroscopic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of a group of N-(2'-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)(3)Cl] in refluxing toluene in the presence of a base (NEW afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d(6), S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)-Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within -0.96 to -1.04 V vs SCE. Potential of the Rh(Ill)-Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent. (c) 2006 Elsevier B.V. All rights reserved.