5 resultados para loi du 6 avril 2010

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, where asset value and population density are greatest, the model spatial resolution required to represent flows through a typical street network (i.e. < 10m) often results in impractical computational cost at the whole city scale. Explicit diffusive storage cell models become very inefficient at such high resolutions, relative to shallow water models, because the stable time step in such schemes scales as a quadratic of resolution. This paper presents the calibration and evaluation of a recently developed new formulation of the LISFLOOD-FP model, where stability is controlled by the Courant–Freidrichs–Levy condition for the shallow water equations, such that, the stable time step instead scales linearly with resolution. The case study used is based on observations during the summer 2007 floods in Tewkesbury, UK. Aerial photography is available for model evaluation on three separate days from the 24th to the 31st of July. The model covered a 3.6 km by 2 km domain and was calibrated using gauge data from high flows during the previous month. The new formulation was benchmarked against the original version of the model at 20 m and 40 m resolutions, demonstrating equally accurate performance given the available validation data but at 67x faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in a significantly more accurate simulation of the drying dynamics compared to that simulated by the coarse resolution models, although estimates of peak inundation depth were similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we make an initial step toward the development of an ocean assimilation system that can constrain the modelled Atlantic Meridional Overturning Circulation (AMOC) to support climate predictions. A detailed comparison is presented of 1° and 1/4° resolution global model simulations with and without sequential data assimilation, to the observations and transport estimates from the RAPID mooring array across 26.5° N in the Atlantic. Comparisons of modelled water properties with the observations from the merged RAPID boundary arrays demonstrate the ability of in situ data assimilation to accurately constrain the east-west density gradient between these mooring arrays. However, the presence of an unconstrained "western boundary wedge" between Abaco Island and the RAPID mooring site WB2 (16 km offshore) leads to the intensification of an erroneous southwards flow in this region when in situ data are assimilated. The result is an overly intense southward upper mid-ocean transport (0–1100 m) as compared to the estimates derived from the RAPID array. Correction of upper layer zonal density gradients is found to compensate mostly for a weak subtropical gyre circulation in the free model run (i.e. with no assimilation). Despite the important changes to the density structure and transports in the upper layer imposed by the assimilation, very little change is found in the amplitude and sub-seasonal variability of the AMOC. This shows that assimilation of upper layer density information projects mainly on the gyre circulation with little effect on the AMOC at 26° N due to the absence of corrections to density gradients below 2000 m (the maximum depth of Argo). The sensitivity to initial conditions was explored through two additional experiments using a climatological initial condition. These experiments showed that the weak bias in gyre intensity in the control simulation (without data assimilation) develops over a period of about 6 months, but does so independently from the overturning, with no change to the AMOC. However, differences in the properties and volume transport of North Atlantic Deep Water (NADW) persisted throughout the 3 year simulations resulting in a difference of 3 Sv in AMOC intensity. The persistence of these dense water anomalies and their influence on the AMOC is promising for the development of decadal forecasting capabilities. The results suggest that the deeper waters must be accurately reproduced in order to constrain the AMOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near isogenic lines varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) in cv. Mercia (2005/6 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cvs Maris Huntsman and Maris Widgeon (2007/8 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) were compared at one field site, but within different systems (‘organic’, O, 2005/6 to 2007/8 v ‘intensive’, I, 2005/6 to 2010/11). Further experiments at the site (2006/7 to 2008/9) compared 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. Gibberellin (GA) insensitive dwarfing alleles (Rht-B1b; Rht-B1c; Rht-D1b; Rht-D1c) could reduce α-amylase activity and/or increase Hagberg falling number (HFN) but effects depended greatly on system, background and season. Only Rht-B1c increased grain dormancy despite producing plants taller than Rht-D1c. The GA-sensitive Rht8c+Ppd-D1a in Mercia was associated with reduced HFN but analysis of the DH population suggested this was more closely linked with Ppd-D1a, rather than Rht8c. The severe GA-sensitive dwarfing allele Rht12 was associated with reduced HFN. Instability in HFN over season tended to increase with degree of dwarfing. There was a negative association between mean grain weight and HFN that was in addition to effects of Rht and Ppd-D1 allele.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the cold period of the Last Glacial Maximum (LGM, about 21 000 years ago) atmospheric CO2 was around 190 ppm, much lower than the pre-industrial concentration of 280 ppm. The causes of this substantial drop remain partially unresolved, despite intense research. Understanding the origin of reduced atmospheric CO2 during glacial times is crucial to comprehend the evolution of the different carbon reservoirs within the Earth system (atmosphere, terrestrial biosphere and ocean). In this context, the ocean is believed to play a major role as it can store large amounts of carbon, especially in the abyss, which is a carbon reservoir that is thought to have expanded during glacial times. To create this larger reservoir, one possible mechanism is to produce very dense glacial waters, thereby stratifying the deep ocean and reducing the carbon exchange between the deep and upper ocean. The existence of such very dense waters has been inferred in the LGM deep Atlantic from sediment pore water salinity and δ18O inferred temperature. Based on these observations, we study the impact of a brine mechanism on the glacial carbon cycle. This mechanism relies on the formation and rapid sinking of brines, very salty water released during sea ice formation, which brings salty dense water down to the bottom of the ocean. It provides two major features: a direct link from the surface to the deep ocean along with an efficient way of setting a strong stratification. We show with the CLIMBER-2 carbon-climate model that such a brine mechanism can account for a significant decrease in atmospheric CO2 and contribute to the glacial-interglacial change. This mechanism can be amplified by low vertical diffusion resulting from the brine-induced stratification. The modeled glacial distribution of oceanic δ13C as well as the deep ocean salinity are substantially improved and better agree with reconstructions from sediment cores, suggesting that such a mechanism could have played an important role during glacial times.