57 resultados para logistics regression
em CentAUR: Central Archive University of Reading - UK
Determinants of fruit and vegetable intake in England: a re-examination based on quantile regression
Resumo:
Objective To examine die sociodemographic determinants of fruit and vegetable (F&V) consumption in England and determine the differential effects of socioeconomic variables at various parts of the intake distribution, with a special focus on severely inadequate intakes Design Quantile regression, expressing F&V intake as a function of sociodemographic variables, is employed. Here, quantile regression flexibly allows variables such as ethnicity to exert effects on F&V intake that. vary depending oil existing levels of intake. Setting The 2003 Health survey of England. Subjects Data were from 11044 adult individuals. Results The influence of particular sociodemographic variables is found to vary significantly across the intake distribution We conclude that women consume more F&V than men, Asians and Hacks mole dian Whites, co-habiting individuals more than single-living ones Increased incomes and education also boost intake However, the key general finding of the present study is that the influence of most variables is relatively weak in the area of greatest concern, i e among those with the most inadequate intakes in any reference group. Conclusions. Our findings emphasise the importance of allowing the effects of socio-economic drivers to vary across the intake distribution The main finding, that variables which exert significant influence on F&V Intake at other parts Of the conditional distribution have a relatively weak influence at the lower tail, is cause for concern. It implies that in any defined group, those consuming the lease F&V are hard to influence using compaigns or policy levers.
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
Managing a construction project supply chain effectively and efficiently is extremely difficult due to involvement of numerous sectors that are supported by ineffective communication system. An efficient construction supply chain system ensures the delivery of materials and other services to construction site while minimising costs and rewarding all sectors based on value added to the supply chain. The advancement of information, communication and wireless technologies is driving construction companies to deploy supply chain management strategies to seek better outputs. As part of the emerging wireless technologies, contextaware computing capability represents the next generation of ICT to the construction services. Conceptually, context-awareness could be integrated with Web Services in order to ensure the delivery of pertinent information to construction site and enhance construction supply chain collaboration. An initial study has indicated that this integrated system has the potential of serving and improving the construction services delivery through access to context-specific data, information and services on as-needed basis.
Resumo:
The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.
Resumo:
We report rates of regression and associated findings in a population derived group of 255 children aged 9-14 years, participating in a prevalence study of autism spectrum disorders (ASD); 53 with narrowly defined autism, 105 with broader ASD and 97 with non-ASD neurodevelopmental problems, drawn from those with special educational needs within a population of 56,946 children. Language regression was reported in 30% with narrowly defined autism, 8% with broader ASD and less than 3% with developmental problems without ASD. A smaller group of children were identified who underwent a less clear setback. Regression was associated with higher rates of autistic symptoms and a deviation in developmental trajectory. Regression was not associated with epilepsy or gastrointestinal problems.
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.
Resumo:
Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression application. The locally regularised orthogonal least squares (LROLS) algorithm with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF network models, is extended to the fully complex-valued RBF network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully complex-valued RBF network.
Resumo:
A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.