26 resultados para localized routing in 3D
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new algorithm is described for refining the pose of a model of a rigid object, to conform more accurately to the image structure. Elemental 3D forces are considered to act on the model. These are derived from directional derivatives of the image local to the projected model features. The convergence properties of the algorithm is investigated and compared to a previous technique. Its use in a video sequence of a cluttered outdoor traffic scene is also illustrated and assessed.
Resumo:
New conceptual ideas on network architectures have been proposed in the recent past. Current store-andforward routers are replaced by active intermediate systems, which are able to perform computations on transient packets, in a way that results very helpful for developing and deploying new protocols in a short time. This paper introduces a new routing algorithm, based on a congestion metric, and inspired by the behavior of ants in nature. The use of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized algorithm capable of adapting quickly to changing conditions.
Resumo:
In this paper, we consider multiple-input multiple- output (MIMO) maximal ratio combining (MRC) systems and assess the system performance in terms of average symbol error probability (SEP), outage probability and ergodic capacity in double-correlated Rayleigh-and-Lognormal fading channels. In order to derive the receive and transmit correlation functions needed for the performance analysis, a three-dimensional (3D) MIMO mobile-to-mobile (M-to-M) channel model, which takes into account the effects of fast fading and shadowing is used. Numerical results are provided to show the effects of system parameters, such as maximum elevation angle of scatterers, orientation angle of antenna array in the x-y plane, angle between x-y plane and the antenna array orientation, and degree of scattering in the x-y plane, on the system performance.
Resumo:
Spatial and temporal fluctuations in the concentration field from an ensemble of continuous point-source releases in a regular building array are analyzed from data generated by direct numerical simulations. The release is of a passive scalar under conditions of neutral stability. Results are related to the underlying flow structure by contrasting data for an imposed wind direction of 0 deg and 45 deg relative to the buildings. Furthermore, the effects of distance from the source and vicinity to the plume centreline on the spatial and temporal variability are documented. The general picture that emerges is that this particular geometry splits the flow domain into segments (e.g. “streets” and “intersections”) in each of which the air is, to a first approximation, well mixed. Notable exceptions to this general rule include regions close to the source, near the plume edge, and in unobstructed channels when the flow is aligned. In the oblique (45 deg) case the strongly three-dimensional nature of the flow enhances mixing of a scalar within the canopy leading to reduced temporal and spatial concentration fluctuations within the plume core. These fluctuations are in general larger for the parallel flow (0 deg) case, especially so in the long unobstructed channels. Due to the more complex flow structure in the canyon-type streets behind buildings, fluctuations are lower than in the open channels, though still substantially larger than for oblique flow. These results are relevant to the formulation of simple models for dispersion in urban areas and to the quantification of the uncertainties in their predictions.
Resumo:
Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.
Resumo:
Root characteristics of seedlings of five different barley genotypes were analysed in 2D using gel chambers, and in 3D using soil sacs that were destructively harvested and pots of soil that were assessed non-invasively using X-ray microtomography. After 5 days, Chime produced the greatest number of root axes (similar to 6) and Mehola significantly less (similar to 4) in all growing methods. Total root length was longest in GSH01915 and shortest in Mehola for all methods, but both total length and average root diameter were significantly larger for plants grown in gel chambers than those grown in soil. The ranking of particular growth traits (root number, root angular spread) of plants grown in gel plates, soil sacs and X-ray pots was similar, but plants grown in the gel chambers had a different order of ranking for root length to the soil-grown plants. Analysis of angles in soil-grown plants showed that Tadmore had the most even spread of individual roots and Chime had a propensity for non-uniform distribution and root clumping. The roots of Mehola were less well spread than the barley cultivars supporting the suggestion that wild and landrace barleys tend to have a narrower angular spread than modern cultivars. The three dimensional analysis of root systems carried out in this study provides insights into the limitations of screening methods for root traits and useful data for modelling root architecture.
Resumo:
Ant colonies in nature provide a good model for a distributed, robust and adaptive routing algorithm. This paper proposes the adoption of the same strategy for the routing of packets in an Active Network. Traditional store-and-forward routers are replaced by active intermediate systems, which are able to perform computations on transient packets, in a way that results very helpful for developing and dynamically deploying new protocols. The adoption of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized routing algorithm capable of adapting to network traffic conditions.
Resumo:
The development of shallow cellular convection in warm orographic clouds is investigated through idealized numerical simulations of moist flow over topography using a cloud-resolving numerical model. Buoyant instability, a necessary element for moist convection, is found to be diagnosed most accurately through analysis of the moist Brunt–Väisälä frequency (N_m) rather than the vertical profile of θ_e. In statically unstable orographic clouds (N_m^2) < 0), additional environmental and terrain-related factors are shown to have major effects on the amount of cellularity that occurs in 2D simulations. One of these factors, the basic-state wind shear, may suppress convection in 2D yet allow for longitudinal convective roll circulations in 3D. The presence of convective structures within an orographic cloud substantially enhanced the maximum rainfall rates, precipitation efficiencies, and precipitation accumulations in all simulations.
Resumo:
The aim of this study was to evaluate the distribution of inhibin/activin alpha, beta(A) and beta(B) subunits and follistatin in immature oocytes and in matured oocytes before and after IVF. Denuded oocytes were submitted to a whole-mount immunofluorescence procedure. Specimens were imaged and fluorescent intensities quantified by scanning laser confocal microscopy. Immunoreactivity for inhibin alpha subunit (both alpha(C) and pro-alpha. regions), abundant in the ooplasm of immature oocytes, decreased after maturation (a 68% and 88% decrease, respectively; P < 0.001), but increased after IVF by 2- and 5.7-fold, respectively (P < 0.01). Intense staining for PA was detected in immature oocytes (predominantly in the outer ooplasm and zona pellucida) but after maturation and fertilization it was localized mainly in the zona pellucida, perivitelline space and oolemma. Immunoreactivity for RA in the ooplasm decreased by 58% after maturation (P < 0.001) but increased again by 75% after fertilization (P < 0.01). Immunoreactivity for beta(B) was localized mainly in the zona pellucida and did not change after maturation. However, immurloreactivity for beta(B) was not detected in the zona pellucida after fertilization, but remained unchanged in unfertilized oocytes. Immunoreactivity for follistatin was detected in the ooplasm and zona pellucida of immature oocytes but decreased progressively in the ooplasm after maturation (a 63% decrease; P < 0.001) and did not change after IVF. Examination of partially denuded cumulus-oocyte complexes confirmed abundant expression of alpha(C), pro-alpha, beta(A) and follistatin immunoreactivity in cumulus cells, whereas beta(B) subunit staining was weak or absent in cumulus cells, but intense in the zona pellucida. In conclusion, the present study shows that qualitative and quantitative changes in the distribution of inhibin/activin subunits and follistatin accompany oocyte maturation and fertilization. The possibility, indicated by these observations, that activin A and activin B may play distinct roles in bovine oocyte maturation and fertilization warrants further study.
Resumo:
Fully connected cubic networks (FCCNs) are a class of newly proposed hierarchical interconnection networks for multicomputer systems, which enjoy the strengths of constant node degree and good expandability. The shortest path routing in FCCNs is an open problem. In this paper, we present an oblivious routing algorithm for n-level FCCN with N = 8(n) nodes, and prove that this algorithm creates a shortest path from the source to the destination. At the costs of both an O(N)-parallel-step off-line preprocessing phase and a list of size N stored at each node, the proposed algorithm is carried out at each related node in O(n) time. In some cases the proposed algorithm is superior to the one proposed by Chang and Wang in terms of the length of the routing path. This justifies the utility of our routing strategy. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
The periodic domains formed by block copolymer melts have been heralded as potential scaffolds for arranging nanoparticles in 3d space, provided we can control the positioning of the particles. Recent experiments have located particles at the domain interfaces by grafting mixed brushes to their surfaces. Here the underlying mechanism, which involves the transformation into Janus particles, is investigated with self-consistent field theory using a new multi-coordinate-system algorithm.
Resumo:
We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC) crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity. The same applies in 3D, where noise degrades the isoperimetric ratio for perturbed FCC and BCC lattices, whereas the opposite holds for perturbed SCC lattices. This allows for formulating a weaker form of the Kelvin conjecture. By analysing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape heavily fluctuates when noise is introduced in the system. In 2D, the geometrical properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established, which agrees with exact asymptotic results. Anomalous scaling relations are observed between the perimeter and the area in the 2D and between the areas and the volumes of the cells in 3D: except for the hexagonal (2D) and FCC structure (3D), this applies also for infinitesimal noise. In the Poisson-Voronoi limit, the anomalous exponent is about 0.17 in both the 2D and 3D case. A positive anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), in 3D it is shown that the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.
Resumo:
Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.
Resumo:
Many global climate models (GCMs) have trouble simulating Southern Annular Mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve our understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy-mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM. In the observed atmosphere, in the summer season, a strong negative feedback by planetary scale waves, in particular zonal wavenumber 3, is found in a localized region in the south west Pacific. It cancels a large proportion of the positive feedback by synoptic and smaller scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model. Analysis of the summertime eddy feedbacks in the CMIP-5 models confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season.