13 resultados para local mode

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In part I of this study [Baggott, Clase, and Mills, Spectrochim. Acta Part A 42, 319 (1986)] we presented FTIR spectra of gas phase cyclobutene and modeled the v=1–3 stretching states of both olefinic and methylenic C–H bonds in terms of a local mode model. In this paper we present some improvements to our original model and make use of recently derived ‘‘x,K relations’’ to find the equivalent normal mode descriptions. The use of both the local mode and normal mode approaches to modeling the vibrational structure is described in some detail. We present evidence for Fermi resonance interactions between the methylenic C–H stretch overtones and ring C–C stretch vibrations, revealed in laser photoacoustic spectra in the v=4–6 region. An approximate model vibrational Hamiltonian is proposed to explain the observed structure and is used to calculate the dynamics of the C–H stretch local mode decay resulting from interaction with lower frequency ring modes. The implications of our experimental and theoretical studies for mode‐selective photochemistry are discussed briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously published data on the vibrational fundamentals and overtones of the carbonyl stretching modes of Ni(CO)4 and Co(CO)3NO are reinterpreted using the recent model of Mills and Robiette, including Darling-Dennison resonances and local mode effects. The harmonic wavenumber θm and anharmonicity constant xm associated with the carbonyl and nitrosyl stretching modes are derived, and the 13C and 18O isotopic shifts are discussed in relation to the harmonic and anharmonic force field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The =CH2 AND =CD2 stretching vibrational overtones of H2C=CD2 have been studied up to V= 6 and V= 3, respectively. We report their interpretation in terms of a transition from normal to local modes, involving Fermi resonance with the C=C stretching and CH2 scissoring vibrations. We discuss the alternative representation of the vibrational Hamiltonian matrix in local mode and normal mode basis functions, and conclude that the normal mode basis offers greater flexibility in representing small anharmonic couplings with other modes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simple model for the effective vibrational hamiltonian of the XH stretching vibrations in H2O, NH3 and CH4 is considered, based on a morse potential function for the bond stretches plus potential and kinetic energy coupling between pairs of bond oscillators. It is shown that this model can be set up as a matrix in local mode basis functions, or as a matrix in normal mode basis functions, leading to identical results. The energy levels obtained exhibit normal mode patterns at low vibrational excitation, and local mode patterns at high excitation. When the hamiltonian is set up in the normal mode basis it is shown that Darling-Dennison resonances must be included, and simple relations are found to exist between the xrs, gtt, and Krrss anharmonic constants (where the Darling-Dennison coefficients are denoted K) due to their contributions from morse anharmonicity in the bond stretches. The importance of the Darling-Dennison resonances is stressed. The relationship of the two alternative representations of this local mode/normal mode model are investigated, and the potential uses and limitations of the model are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The results recently obtained by Mills and Robiette on local-mode effects in H2O, NH3 and CH4 type molecules are extended to ethene (C2H4) and propadiene (C3H4) type molecules. General relations among the anharmonic xrs constants and the Darling-Dennison Krrss constants for the stretching vibrations are derived, called “x,K relations”, which allow local-mode effects to be generated by adding the appropriate anharmonic and Darling-Dennison constants to the familiar normal-mode model of molecular vibrations. The general utility of x,K relations is discussed, and the results are reviewed for the molecular types for which they have so far been derived.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The vibrational structure of C---H stretching states in gas-phase cyclobutene was studied using FTIR spectroscopy in the range 700–9000 cm−1. The structure was modelled using two effective vibrational Hamiltonians, one for each type of C---H bond present, consisting of local mode basis functions subject to coupling with symmetrically equivalent bonds and to Fermi resonances with suitable low frequency vibrations. Best-fit model parameters were determined using least-squares routines and the model predictions are compared to the observed band positions and intensities. Some discussion is given of the relevance of the observed couplings to intramolecular vibrational redistribution (IVR) which results in the observation of statistical behaviour in cyclobutene isomerization induced by excitation of C---H stretching overtones in the visible region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser photoacoustic spectra of vapour phase CHDCl2 reveal the presence of an interaction which has been ascribed to interbond coupling between C-H and C-D local modes. The absolute value of the interbond coupling parameter for the CHD group, determined from a fit of a model local mode hamiltonian to the experimental data, is shown to be given approximately by the geometric mean of the interbond coupling parameters of the CH2 and CD2 groups recently derived from similar studies of CH2Cl2 and CD2Cl2. Such behaviour is understood in terms of a simple analysis in which kinetic coupling effects dominate. It is suggested that C-H stretch/bend Fermi resonance is responsible for some weaker features in the spectra and modelling calculations are described which allow an order of magnitude estimate of the size of the coupling parameter involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rovibrational energy levels, transition frequencies, and linestrengths are computed variationally for the sulfur hydrides D2S and HDS, using ab initio potential energy and dipole surfaces. Wave-numbers for the pure rotational transitions agree to within 0.2 cm−1 of the experimental lines. For the fundamental vibrational transitions, the band origins for D2S are 860.4, 1900.6, and 1912.0 cm−1 for ν2, ν1, and ν3, respectively, compared with the corresponding experimental values of 855.4, 1896.4, and 1910.2 cm−1. For HDS, we compute ν2 to be 1039.4 cm−1, compared with the experimental value of 1032.7 cm−1. The relative merits of local and normal mode descriptions for the overtone stretching band origins are discussed. Our results confirm the local mode nature of the H2S, D2S, and HDS system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some of the characteristics of high overtone spectra observed in the near infrared are discussed, particularly in relation to local mode effects, the increasing density of states, and the effect of inter-state resonances and intramolecular vibrational redistribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient episodes of synchronisation of neuronal activity in particular frequency ranges are thought to underlie cognition. Empirical mode decomposition phase locking (EMDPL) analysis is a method for determining the frequency and timing of phase synchrony that is adaptive to intrinsic oscillations within data, alleviating the need for arbitrary bandpass filter cut-off selection. It is extended here to address the choice of reference electrode and removal of spurious synchrony resulting from volume conduction. Spline Laplacian transformation and independent component analysis (ICA) are performed as pre-processing steps, and preservation of phase synchrony between synthetic signals. combined using a simple forward model, is demonstrated. The method is contrasted with use of bandpass filtering following the same preprocessing steps, and filter cut-offs are shown to influence synchrony detection markedly. Furthermore, an approach to the assessment of multiple EEG trials using the method is introduced, and the assessment of statistical significance of phase locking episodes is extended to render it adaptive to local phase synchrony levels. EMDPL is validated in the analysis of real EEG data, during finger tapping. The time course of event-related (de)synchronisation (ERD/ERS) is shown to differ from that of longer range phase locking episodes, implying different roles for these different types of synchronisation. It is suggested that the increase in phase locking which occurs just prior to movement, coinciding with a reduction in power (or ERD) may result from selection of the neural assembly relevant to the particular movement. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much is known about the functional mechanisms involved in visual search. Yet, the fundamental question of whether the visual system can perform different types of visual analysis at different spatial resolutions still remains unsettled. In the visual-attention literature, the distinction between different spatial scales of visual processing corresponds to the distinction between distributed and focused attention. Some authors have argued that singleton detection can be performed in distributed attention, whereas others suggest that even such a simple visual operation involves focused attention. Here we showed that microsaccades were spatially biased during singleton discrimination but not during singleton detection. The results provide support to the hypothesis that some coarse visual analysis can be performed in a distributed attention mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pitch-angle scattering of electrons can limit the stably trapped particle flux in the magnetosphere and precipitate energetic electrons into the ionosphere. Whistler-mode waves generated by a temperature anisotropy can mediate this pitch-angle scattering over a wide range of radial distances and latitudes, but in order to correctly predict the phase-space diffusion, it is important to characterise the whistler-mode wave distributions that result from the instability. We use previously-published observations of number density, pitch-angle anisotropy and phase space density to model the plasma in the quiet pre-noon magnetosphere (defined as periods when AE<100nT). We investigate the global propagation and growth of whistler-mode waves by studying millions of growing ray paths and demonstrate that the wave distribution at any one location is a superposition of many waves at different points along their trajectories and with different histories. We show that for observed electron plasma properties, very few raypaths undergo magnetospheric reflection, most rays grow and decay within 30 degrees of the magnetic equator. The frequency range of the wave distribution at large L can be adequately described by the solutions of the local dispersion relation, but the range of wavenormal angle is different. The wave distribution is asymmetric with respect to the wavenormal angle. The numerical results suggest that it is important to determine the variation of magnetospheric parameters as a function of latitude, as well as local time and L-shell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements from ground-based magnetometers and riometers at auroral latitudes have demonstrated that energetic (~30-300keV) electron precipitation can be modulated in the presence of magnetic field oscillations at ultra-low frequencies. It has previously been proposed that an ultra-low frequency (ULF) wave would modulate field and plasma properties near the equatorial plane, thus modifying the growth rates of whistler-mode waves. In turn, the resulting whistler-mode waves would mediate the pitch-angle scattering of electrons resulting in ionospheric precipitation. In this paper, we investigate this hypothesis by quantifying the changes to the linear growth rate expected due to a slow change in the local magnetic field strength for parameters typical of the equatorial region around 6.6RE radial distance. To constrain our study, we determine the largest possible ULF wave amplitudes from measurements of the magnetic field at geosynchronous orbit. Using nearly ten years of observations from two satellites, we demonstrate that the variation in magnetic field strength due to oscillations at 2mHz does not exceed ±10% of the background field. Modifications to the plasma density and temperature anisotropy are estimated using idealised models. For low temperature anisotropy, there is little change in the whistler-mode growth rates even for the largest ULF wave amplitude. Only for large temperature anisotropies can whistler-mode growth rates be modulated sufficiently to account for the changes in electron precipitation measured by riometers at auroral latitudes.