8 resultados para linewidth-narrowed
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper reports an uncertainty analysis of critical loads for acid deposition for a site in southern England, using the Steady State Mass Balance Model. The uncertainty bounds, distribution type and correlation structure for each of the 18 input parameters was considered explicitly, and overall uncertainty estimated by Monte Carlo methods. Estimates of deposition uncertainty were made from measured data and an atmospheric dispersion model, and hence the uncertainty in exceedance could also be calculated. The uncertainties of the calculated critical loads were generally much lower than those of the input parameters due to a "compensation of errors" mechanism - coefficients of variation ranged from 13% for CLmaxN to 37% for CL(A). With 1990 deposition, the probability that the critical load was exceeded was > 0.99; to reduce this probability to 0.50, a 63% reduction in deposition is required; to 0.05, an 82% reduction. With 1997 deposition, which was lower than that in 1990, exceedance probabilities declined and uncertainties in exceedance narrowed as deposition uncertainty had less effect. The parameters contributing most to the uncertainty in critical loads were weathering rates, base cation uptake rates, and choice of critical chemical value, indicating possible research priorities. However, the different critical load parameters were to some extent sensitive to different input parameters. The application of such probabilistic results to environmental regulation is discussed.
Resumo:
The impact of environment on the germination biology of Striga hermonthica was studied in the laboratory by conditioning seeds at various water potentials and urea concentrations at 17.5 to 37.5°C for up to 133 days. The experimental results presented in this research are related to the effects of temperature, water potential and urea nitrogen concentration during conditioning on subsequent germination percentage of S. hermonthica. Maximum germination in S. hermonthica seeds was observed at conditioning temperatures of 20 to 25°C within the range investigated of 17.5 to 37.5°C. Water stress and also urea during conditioning suppressed maximum germination. However, the conditioning temperature ranges at which maximum germination percentages occur vary with water stress and also urea concentration. In the presence of a high concentration of urea (3.16 mM), temperatures required for maximum germination narrowed to between 17.5 to 20°C. The optimum period of conditioning decreased with increase in water stress and also urea concentration similar to previous reports. The implications of these findings on Striga hermonthica field infestations have been investigated and being reported in another paper. Germination was greatly suppressed by conditioning environments including 3.16 mM urea and at 37.5°C. At the high concentration of 3.16 mM, temperatures required for maximum germination narrowed to between 17.5 and 20°C. Optimum conditioning period decreased with water stress and with increase in urea concentration.
Synergetic effects of the Cu/Pt{110} surface alloy: enhanced reactivity of water and carbon monoxide
Resumo:
We have used synchrotron-based high-resolution X-ray photoelectron spectroscopy in combination with ab initio density functional theory calculations to investigate the characteristics of water and CO adsorption on the bimetallic Cu/Pt{110}-(2 x 1) surface at a Cu coverage near 0.5 ML. Cu fills the troughs of the reconstructed clean surface forming nanowires, which are stable up to 830 K. Their presence dramatically influences the adsorption of water and CO. Water adsorption changes from intact to partially dissociated while the desorption temperature of CO on this surface increases by up to 27 K with respect to the clean Pt{110} surface. Ab initio calculations and experimental valence band spectra reveal that the Cu 3d-band is narrowed and shifted upward with respect to bulk Cu surfaces. This and electron donation to surface Pt atoms cause the increase in the bond strength between CO and the Pt surface atoms. The pathway for water dissociation occurs via Cu surface atoms. The heat of adsorption of water bonding to Cu surface atoms was calculated to be 0.82 eV, which is significantly higher than on the clean Pt{110} surface; the activation energy for partial dissociation is 0.53 eV (not corrected for zero point energy).
Resumo:
CO, O3, and H2O data in the upper troposphere/lower stratosphere (UTLS) measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer(ACE-FTS) on Canada’s SCISAT-1 satellite are validated using aircraft and ozonesonde measurements. In the UTLS, validation of chemical trace gas measurements is a challenging task due to small-scale variability in the tracer fields, strong gradients of the tracers across the tropopause, and scarcity of measurements suitable for validation purposes. Validation based on coincidences therefore suffers from geophysical noise. Two alternative methods for the validation of satellite data are introduced, which avoid the usual need for coincident measurements: tracer-tracer correlations, and vertical tracer profiles relative to tropopause height. Both are increasingly being used for model validation as they strongly suppress geophysical variability and thereby provide an “instantaneous climatology”. This allows comparison of measurements between non-coincident data sets which yields information about the precision and a statistically meaningful error-assessment of the ACE-FTS satellite data in the UTLS. By defining a trade-off factor, we show that the measurement errors can be reduced by including more measurements obtained over a wider longitude range into the comparison, despite the increased geophysical variability. Applying the methods then yields the following upper bounds to the relative differences in the mean found between the ACE-FTS and SPURT aircraft measurements in the upper troposphere (UT) and lower stratosphere (LS), respectively: for CO ±9% and ±12%, for H2O ±30% and ±18%, and for O3 ±25% and ±19%. The relative differences for O3 can be narrowed down by using a larger dataset obtained from ozonesondes, yielding a high bias in the ACEFTS measurements of 18% in the UT and relative differences of ±8% for measurements in the LS. When taking into account the smearing effect of the vertically limited spacing between measurements of the ACE-FTS instrument, the relative differences decrease by 5–15% around the tropopause, suggesting a vertical resolution of the ACE-FTS in the UTLS of around 1 km. The ACE-FTS hence offers unprecedented precision and vertical resolution for a satellite instrument, which will allow a new global perspective on UTLS tracer distributions.
Resumo:
This Themed Section aims to increase understanding of how the idea of climate change, and the policies and actions that spring from it, travel beyond their origins in natural sciences to meet different political arenas in the developing world. It takes a discursive approach whereby climate change is not just a set of physical processes but also a series of messages, narratives and policy prescriptions. The articles are mostly case study-based and focus on sub-Saharan Africa and Small Island Developing States (SIDS). They are organised around three interlinked themes. The first theme concerns the processes of rapid technicalisation and professionalisation of the climate change ‘industry’, which have sustantially narrowed the boundaries of what can be viewed as a legitimate social response to the problem of global warming. The second theme deals with the ideological effects of the climate change industry, which is ‘depoliticisation’, in this case the deflection of attention away from underlying political conditions of vulnerability and exploitation towards the nature of the physical hazard itself. The third theme concerns the institutional effects of an insufficiently socialised idea of climate change, which is the maintenance of existing relations of power or their reconfiguration in favour of the already powerful. Overall, the articles suggest that greater scrutiny of the discursive and political dimensions of mitigation and adaptation activities is required. In particular, greater attention should be directed towards the policy consequences that governments and donors construct as a result of their framing and rendition of climate change issues.
Resumo:
Recently, the original benchmarking methodology of the Sustainable Value approach became subjected to serious debate. While Kuosmanen and Kuosmanen (2009b) critically question its validity introducing productive efficiency theory, Figge and Hahn (2009) put forward that the implementation of productive efficiency theory severely conflicts with the original financial economics perspective of the Sustainable Value approach. We argue that the debate is very confusing because the original Sustainable Value approach presents two largely incompatible objectives. Nevertheless, we maintain that both ways of benchmarking could provide useful and moreover complementary insights. If one intends to present the overall resource efficiency of the firm from the investor's viewpoint, we recommend the original benchmarking methodology. If one on the other hand aspires to create a prescriptive tool setting up some sort of reallocation scheme, we advocate implementation of the productive efficiency theory. Although the discussion on benchmark application is certainly substantial, we should avoid the debate to become accordingly narrowed. Next to the benchmark concern, we see several other challenges considering the development of the Sustainable Value approach: (1) a more systematic resource selection, (2) the inclusion of the value chain and (3) additional analyses related to policy in order to increase interpretative power.
Resumo:
In mammalian cells, inflammation is mainly mediated by the binding of tumor necrosis factor alpha to tumor necrosis factor receptor 1. In this study, we investigated lateral dynamics of TNF-R1 before and after ligand binding using high-density single-particle tracking in combination with photoactivated localization microscopy. Our single-molecule data indicates the presence of tumor necrosis factor receptor 1 with different mobilities in the plasma membrane, suggesting different molecular organizations. Cholesterol depletion led to a decrease of slow receptor species and a strong increase in the average diffusion coefficient. Moreover, as a consequence of tumor necrosis factor-alpha treatment, the mean diffusion coefficient moderately increased while its distribution narrowed. Based on our observation, we propose a refined mechanism on the structural arrangement and activation of tumor necrosis factor receptor 1 in the plasma membrane.
Resumo:
Climate models indicate a future wintertime precipitation reduction in the Mediterranean region but there is large uncertainty in the amplitude of the projected change. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the Mediterranean precipitation change. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. It follows that the uncertainty in cold-season Mediterranean precipitation projection will not be narrowed unless the uncertainty in the atmospheric circulation response is reduced.