72 resultados para linear quadratic control

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique is derived for solving a non-linear optimal control problem by iterating on a sequence of simplified problems in linear quadratic form. The technique is designed to achieve the correct solution of the original non-linear optimal control problem in spite of these simplifications. A mixed approach with a discrete performance index and continuous state variable system description is used as the basis of the design, and it is shown how the global problem can be decomposed into local sub-system problems and a co-ordinator within a hierarchical framework. An analysis of the optimality and convergence properties of the algorithm is presented and the effectiveness of the technique is demonstrated using a simulation example with a non-separable performance index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on integrated system optimisation and parameter estimation a method is described for on-line steady state optimisation which compensates for model-plant mismatch and solves a non-linear optimisation problem by iterating on a linear - quadratic representation. The method requires real process derivatives which are estimated using a dynamic identification technique. The utility of the method is demonstrated using a simulation of the Tennessee Eastman benchmark chemical process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified linear quadratic model based problem with parameter updating in such a manner that the correct solution of the original non-linear problem is achieved. The resulting algorithm has a particular advantage in that the solution is achieved without the need to solve the differential algebraic equations . Convergence aspects are discussed and a simulation example is described which illustrates the performance of the technique. 1. Introduction When modelling industrial processes often the resulting equations consist of coupled differential and algebraic equations (DAEs). In many situations these equations are nonlinear and cannot readily be directly reduced to ordinary differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a discrete time dynamic integrated system optimisation and parameter estimation algorithm is applied to the solution of the nonlinear tracking optimal control problem. A version of the algorithm with a linear-quadratic model-based problem is developed and implemented in software. The algorithm implemented is tested with simulation examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some necessary and sufficient conditions for closed-loop eigenstructure assignment by output feedback in time-invariant linear multivariable control systems are presented. A simple condition on a square matrix necessary and sufficient for it to be the closed-loop plant matrix of a given system with some output feedback is the basis of the paper. Some known results on entire eigenstructure assignment are deduced from this. The concept of an inner inverse of a matrix is employed to obtain a condition concerning the assignment of an eigenstructure consisting of the eigenvalues and a mixture of left and right eigenvectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the SIMULINK implementation of a constrained predictive control algorithm based on quadratic programming and linear state space models, and its application to a laboratory-scale 3D crane system. The algorithm is compatible with Real Time. Windows Target and, in the case of the crane system, it can be executed with a sampling period of 0.01 s and a prediction horizon of up to 300 samples, using a linear state space model with 3 inputs, 5 outputs and 13 states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.