26 resultados para library automated system
em CentAUR: Central Archive University of Reading - UK
Resumo:
Temperature, pressure, gas stoichiometry, and residence time were varied to control the yield and product distribution of the palladium-catalyzed aminocarbonylation of aromatic bromides in both a silicon microreactor and a packed-bed tubular reactor. Automation of the system set points and product sampling enabled facile and repeatable reaction analysis with minimal operator supervision. It was observed that the reaction was divided into two temperature regimes. An automated system was used to screen steady-state conditions for offline analysis by gas chromatography to fit a reaction rate model. Additionally, a transient temperature ramp method utilizing online infrared analysis was used, leading to more rapid determination of the reaction activation energy of the lower temperature regimes. The entire reaction spanning both regimes was modeled in good agreement with the experimental data.
Resumo:
Objective To assess the impact of a closed-loop electronic prescribing and automated dispensing system on the time spent providing a ward pharmacy service and the activities carried out. Setting Surgical ward, London teaching hospital. Method All data were collected two months pre- and one year post-intervention. First, the ward pharmacist recorded the time taken each day for four weeks. Second, an observational study was conducted over 10 weekdays, using two-dimensional work sampling, to identify the ward pharmacist's activities. Finally, medication orders were examined to identify pharmacists' endorsements that should have been, and were actually, made. Key findings Mean time to provide a weekday ward pharmacy service increased from 1 h 8 min to 1 h 38 min per day (P = 0.001; unpaired t-test). There were significant increases in time spent prescription monitoring, recommending changes in therapy/monitoring, giving advice or information, and non-productive time. There were decreases for supply, looking for charts and checking patients' own drugs. There was an increase in the amount of time spent with medical and pharmacy staff, and with 'self'. Seventy-eight per cent of patients' medication records could be assessed for endorsements pre- and 100% post-intervention. Endorsements were required for 390 (50%) of 787 medication orders pre-intervention and 190 (21%) of 897 afterwards (P < 0.0001; chi-square test). Endorsements were made for 214 (55%) of endorsement opportunities pre-intervention and 57 (30%) afterwards (P < 0.0001; chi-square test). Conclusion The intervention increased the overall time required to provide a ward pharmacy service and changed the types of activity undertaken. Contact time with medical and pharmacy staff increased. There was no significant change in time spent with patients. Fewer pharmacy endorsements were required post-intervention, but a lower percentage were actually made. The findings have important implications for the design, introduction and use of similar systems.
Resumo:
An in vitro study was conducted to investigate the effect of tannins on the extent and rate of gas and methane production, using an automated pressure evaluation system (APES). In this study three condensed tannins (CT; quebracho, grape seed and green tea tannins) and four hydrolysable tannins (HT; tara, valonea, myrabolan and chestnut tannins) were evaluated, with lucerne as a control substrate. CT and HT were characterised by matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF-MS). Tannins were added to the substrate at an effective concentration of 100 g/kg either with or without polyethylene glycol (PEG6000), and incubated for 72 h in pooled, buffered rumen liquid from four lactating dairy cows. After inoculation, fermentation bottles were immediately connected to the APES to measure total cumulative gas production (GP). During the incubation, 11 gas samples were collected from each bottle at 0, 1, 4, 7, 11, 15, 23, 30, 46, 52 and 72 h of incubation and analysed for methane. A modified Michaelis-Menten model was fitted to the methane concentration patterns and model estimates were used to calculate the total cumulative methane production (GPCH4). GP and GPCH4 curves were fitted using a modified monophasic Michaelis-Menten model. Addition of quebracho reduced GP (P=0.002), whilst the other tannins did not affect GP. Addition of PEG increased GP for quebracho (P=0.003), valonea (P=0.058) and grape seed tannins (P=0.071), suggesting that these tannins either inhibited or tended to inhibit fermentation. Addition of quebracho and grape seed tannins also reduced (P≤0.012) the maximum rate of gas production, indicating that microbial activity was affected. Quebracho, valonea, myrabolan and grape seed decreased (P≤0.003) GPCH4 and the maximum rate (0.001≤ P≤ 0.102) of CH4 production. Addition of chestnut, green tea and tara tannins did not affect total gas nor methane production. Valonea and myrabolan tannins have most promise for reducing methane production as they had only a minor impact on gas production.
Resumo:
Petasis and Ugi reactions are used successively without intermediate purification, effectively accomplishing a six-component reaction. The examined reactions are transferred from traditional batch reactors to an automated continuous flow microreactor setup, where optimization and kinetic analyses are performed, proposed mechanisms evaluated, and rate-limiting steps determined.
Resumo:
Planning a project with proper considerations of all necessary factors and managing a project to ensure its successful implementation will face a lot of challenges. Initial stage in planning a project for bidding a project is costly, time consuming and usually with poor accuracy on cost and effort predictions. On the other hand, detailed information for previous projects may be buried in piles of archived documents which can be increasingly difficult to learn from the previous experiences. Project portfolio has been brought into this field aiming to improve the information sharing and management among different projects. However, the amount of information that could be shared is still limited to generic information. This paper, we report a recently developed software system COBRA to automatically generate a project plan with effort estimation of time and cost based on data collected from previous completed projects. To maximise the data sharing and management among different projects, we proposed a method of using product based planning from PRINCE2 methodology. (Automated Project Information Sharing and Management System -�COBRA) Keywords: project management, product based planning, best practice, PRINCE2
Resumo:
Objectives: To assess the impact of a closed-loop electronic prescribing, automated dispensing, barcode patient identification and electronic medication administration record (EMAR) system on prescribing and administration errors, confirmation of patient identity before administration, and staff time. Design, setting and participants: Before-and-after study in a surgical ward of a teaching hospital, involving patients and staff of that ward. Intervention: Closed-loop electronic prescribing, automated dispensing, barcode patient identification and EMAR system. Main outcome measures: Percentage of new medication orders with a prescribing error, percentage of doses with medication administration errors (MAEs) and percentage given without checking patient identity. Time spent prescribing and providing a ward pharmacy service. Nursing time on medication tasks. Results: Prescribing errors were identified in 3.8% of 2450 medication orders pre-intervention and 2.0% of 2353 orders afterwards (p<0.001; χ2 test). MAEs occurred in 7.0% of 1473 non-intravenous doses pre-intervention and 4.3% of 1139 afterwards (p = 0.005; χ2 test). Patient identity was not checked for 82.6% of 1344 doses pre-intervention and 18.9% of 1291 afterwards (p<0.001; χ2 test). Medical staff required 15 s to prescribe a regular inpatient drug pre-intervention and 39 s afterwards (p = 0.03; t test). Time spent providing a ward pharmacy service increased from 68 min to 98 min each weekday (p = 0.001; t test); 22% of drug charts were unavailable pre-intervention. Time per drug administration round decreased from 50 min to 40 min (p = 0.006; t test); nursing time on medication tasks outside of drug rounds increased from 21.1% to 28.7% (p = 0.006; χ2 test). Conclusions: A closed-loop electronic prescribing, dispensing and barcode patient identification system reduced prescribing errors and MAEs, and increased confirmation of patient identity before administration. Time spent on medication-related tasks increased.
Resumo:
Background: Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica ( AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. Results: We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABPI), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. Conclusion: The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.
Resumo:
Cashew (Anacardium occidentale L.) is the most economically important tropical nut crop in the world, and yet there are no sequence tagged site (STS) markers available for its study. Here we use an automated, high-throughput system to isolate cashew microsatellites from a non-enriched genomic library blotted onto membranes at high density for screening. Sixty-five sequences contained a microsatellite array, of which 21 proved polymorphic among a closely related seed garden population of 49 genotypes. Twelve markers were suitable for multiplex analysis. Of these, 10 amplified in all three related tropical tree species tested: Anacardium microcarpum, Anacardium pumilum and Anacardium nanum.
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.
Resumo:
Accurate calibration of a head mounted display (HMD) is essential both for research on the visual system and for realistic interaction with virtual objects. Yet, existing calibration methods are time consuming and depend on human judgements, making them error prone. The methods are also limited to optical see-through HMDs. Building on our existing HMD calibration method [1], we show here how it is possible to calibrate a non-see-through HMD. A camera is placed inside an HMD displaying an image of a regular grid, which is captured by the camera. The HMD is then removed and the camera, which remains fixed in position, is used to capture images of a tracked calibration object in various positions. The locations of image features on the calibration object are then re-expressed in relation to the HMD grid. This allows established camera calibration techniques to be used to recover estimates of the display’s intrinsic parameters (width, height, focal length) and extrinsic parameters (optic centre and orientation of the principal ray). We calibrated a HMD in this manner in both see-through and in non-see-through modes and report the magnitude of the errors between real image features and reprojected features. Our calibration method produces low reprojection errors and involves no error-prone human measurements.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).
Resumo:
Accurate calibration of a head mounted display (HMD) is essential both for research on the visual system and for realistic interaction with virtual objects. Yet, existing calibration methods are time consuming and depend on human judgements, making them error prone, and are often limited to optical see-through HMDs. Building on our existing approach to HMD calibration Gilson et al. (2008), we show here how it is possible to calibrate a non-see-through HMD. A camera is placed inside a HMD displaying an image of a regular grid, which is captured by the camera. The HMD is then removed and the camera, which remains fixed in position, is used to capture images of a tracked calibration object in multiple positions. The centroids of the markers on the calibration object are recovered and their locations re-expressed in relation to the HMD grid. This allows established camera calibration techniques to be used to recover estimates of the HMD display's intrinsic parameters (width, height, focal length) and extrinsic parameters (optic centre and orientation of the principal ray). We calibrated a HMD in this manner and report the magnitude of the errors between real image features and reprojected features. Our calibration method produces low reprojection errors without the need for error-prone human judgements.