48 resultados para least common subgraph algorithm
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression application. The locally regularised orthogonal least squares (LROLS) algorithm with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF network models, is extended to the fully complex-valued RBF network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully complex-valued RBF network.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A novel partitioned least squares (PLS) algorithm is presented, in which estimates from several simple system models are combined by means of a Bayesian methodology of pooling partial knowledge. The method has the added advantage that, when the simple models are of a similar structure, it lends itself directly to parallel processing procedures, thereby speeding up the entire parameter estimation process by several factors.
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.
Resumo:
This correspondence introduces a new orthogonal forward regression (OFR) model identification algorithm using D-optimality for model structure selection and is based on an M-estimators of parameter estimates. M-estimator is a classical robust parameter estimation technique to tackle bad data conditions such as outliers. Computationally, The M-estimator can be derived using an iterative reweighted least squares (IRLS) algorithm. D-optimality is a model structure robustness criterion in experimental design to tackle ill-conditioning in model Structure. The orthogonal forward regression (OFR), often based on the modified Gram-Schmidt procedure, is an efficient method incorporating structure selection and parameter estimation simultaneously. The basic idea of the proposed approach is to incorporate an IRLS inner loop into the modified Gram-Schmidt procedure. In this manner, the OFR algorithm for parsimonious model structure determination is extended to bad data conditions with improved performance via the derivation of parameter M-estimators with inherent robustness to outliers. Numerical examples are included to demonstrate the effectiveness of the proposed algorithm.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
A new parameter-estimation algorithm, which minimises the cross-validated prediction error for linear-in-the-parameter models, is proposed, based on stacked regression and an evolutionary algorithm. It is initially shown that cross-validation is very important for prediction in linear-in-the-parameter models using a criterion called the mean dispersion error (MDE). Stacked regression, which can be regarded as a sophisticated type of cross-validation, is then introduced based on an evolutionary algorithm, to produce a new parameter-estimation algorithm, which preserves the parsimony of a concise model structure that is determined using the forward orthogonal least-squares (OLS) algorithm. The PRESS prediction errors are used for cross-validation, and the sunspot and Canadian lynx time series are used to demonstrate the new algorithms.
Resumo:
Recursive Learning Control (RLC) has the potential to significantly reduce the tracking error in many repetitive trajectory applications. This paper presents an application of RLC to a soil testing load frame where non-adaptive techniques struggle with the highly nonlinear nature of soil. The main purpose of the controller is to apply a sinusoidal force reference trajectory on a soil sample with a high degree of accuracy and repeatability. The controller uses a feedforward control structure, recursive least squares adaptation algorithm and RLC to compensate for periodic errors. Tracking error is reduced and stability is maintained across various soil sample responses.
Resumo:
A neurofuzzy classifier identification algorithm is introduced for two class problems. The initial fuzzy base construction is based on fuzzy clustering utilizing a Gaussian mixture model (GMM) and the analysis of covariance (ANOVA) decomposition. The expectation maximization (EM) algorithm is applied to determine the parameters of the fuzzy membership functions. Then neurofuzzy model is identified via the supervised subspace orthogonal least square (OLS) algorithm. Finally a logistic regression model is applied to produce the class probability. The effectiveness of the proposed neurofuzzy classifier has been demonstrated using a real data set.
Resumo:
This paper describes a novel adaptive noise cancellation system with fast tunable radial basis function (RBF). The weight coefficients of the RBF network are adapted by the multi-innovation recursive least square (MRLS) algorithm. If the RBF network performs poorly despite of the weight adaptation, an insignificant node with little contribution to the overall performance is replaced with a new node without changing the model size. Otherwise, the RBF network structure remains unchanged and only the weight vector is adapted. The simulation results show that the proposed approach can well cancel the noise in both stationary and nonstationary ANC systems.
Resumo:
In this paper, we propose a novel online modeling algorithm for nonlinear and nonstationary systems using a radial basis function (RBF) neural network with a fixed number of hidden nodes. Each of the RBF basis functions has a tunable center vector and an adjustable diagonal covariance matrix. A multi-innovation recursive least square (MRLS) algorithm is applied to update the weights of RBF online, while the modeling performance is monitored. When the modeling residual of the RBF network becomes large in spite of the weight adaptation, a node identified as insignificant is replaced with a new node, for which the tunable center vector and diagonal covariance matrix are optimized using the quantum particle swarm optimization (QPSO) algorithm. The major contribution is to combine the MRLS weight adaptation and QPSO node structure optimization in an innovative way so that it can track well the local characteristic in the nonstationary system with a very sparse model. Simulation results show that the proposed algorithm has significantly better performance than existing approaches.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
Resumo:
A self-tuning proportional, integral and derivative control scheme based on genetic algorithms (GAs) is proposed and applied to the control of a real industrial plant. This paper explores the improvement in the parameter estimator, which is an essential part of an adaptive controller, through the hybridization of recursive least-squares algorithms by making use of GAs and the possibility of the application of GAs to the control of industrial processes. Both the simulation results and the experiments on a real plant show that the proposed scheme can be applied effectively.