17 resultados para learning process
em CentAUR: Central Archive University of Reading - UK
Resumo:
Online learning management systems are in use to facilitate the face to face learning process in many universities. There are many variables that shape and influence a student’s perception of an online learning management system. This study investigates whether there is a relationship between the perception of a student regarding the learning management system and their actual usage of such system. It is believed to help better understand the student usage of online learning management system. An online questionnaire was published on a course management system for a selected subject and the student participation was voluntary. Results indicate that no significant relationship between the perception students had about the learning management system and the actual use of the system. Interestingly, a significant relationship was found between having internet access away from university and the student perception about the system. Students who had internet access away from university had better perception about the learning management system even though there was no significant difference in the level of online learning management system usage between the groups.
Resumo:
The advancement of e-learning technologies has made it viable for developments in education and technology to be combined in order to fulfil educational needs worldwide. E-learning consists of informal learning approaches and emerging technologies to support the delivery of learning skills, materials, collaboration and knowledge sharing. E-learning is a holistic approach that covers a wide range of courses, technologies and infrastructures to provide an effective learning environment. The Learning Management System (LMS) is the core of the entire e-learning process along with technology, content, and services. This paper investigates the role of model-driven personalisation support modalities in providing enhanced levels of learning and trusted assimilation in an e-learning delivery context. We present an analysis of the impact of an integrated learning path that an e-learning system may employ to track activities and evaluate the performance of learners.
Resumo:
This paper describes the user modeling component of EPIAIM, a consultation system for data analysis in epidemiology. The component is aimed at representing knowledge of concepts in the domain, so that their explanations can be adapted to user needs. The first part of the paper describes two studies aimed at analysing user requirements. The first one is a questionnaire study which examines the respondents' familiarity with concepts. The second one is an analysis of concept descriptions in textbooks and from expert epidemiologists, which examines how discourse strategies are tailored to the level of experience of the expected audience. The second part of the paper describes how the results of these studies have been used to design the user modeling component of EPIAIM. This module works in a two-step approach. In the first step, a few trigger questions allow the activation of a stereotype that includes a "body" and an "inference component". The body is the representation of the body of knowledge that a class of users is expected to know, along with the probability that the knowledge is known. In the inference component, the learning process of concepts is represented as a belief network. Hence, in the second step the belief network is used to refine the initial default information in the stereotype's body. This is done by asking a few questions on those concepts where it is uncertain whether or not they are known to the user, and propagating this new evidence to revise the whole situation. The system has been implemented on a workstation under UNIX. An example of functioning is presented, and advantages and limitations of the approach are discussed.
Resumo:
In this reply to Neal and Hesketh and to the commentators, we argue that implicit knowledge is partly abstract and can be usefully defined by the criteria of both metaknowledge and intentional control. We suggest that the pattern of dissociations supports a claim of separate implicit and explicit learning modes. According to our characterization, implicit learning leads to knowledge that is not automatically represented as knowledge by the learning process; instead, the presence of knowledge has to be inferred by the subject (partial explicitation) if metaknowledge is gained at all. During explicit learning, knowledge is automatically labeled as knowledge by the learning process, so that metaknowledge comes immediately and to the fullest extent. Finally, we suggest that implicit knowledge may to some degree apply regardless of intention.
Resumo:
The control of fishing mortality via fishing effort remains fundamental to most fisheries management strategies even at the local community or co-management level. Decisions to support such strategies require knowledge of the underlying response of the catch to changes in effort. Even under adaptive management strategies, imprecise knowledge of the response is likely to help accelerate the adaptive learning process. Data and institutional capacity requirements to employ multi-species biomass dynamics and age-structured models invariably render their use impractical particularly in less developed regions of the world. Surplus production models fitted to catch and effort data aggregated across all species offer viable alternatives. The current paper seeks models of this type that best describe the multi-species catch–effort responses in floodplain-rivers, lakes and reservoirs and reef-based fisheries based upon among fishery comparisons, building on earlier work. Three alternative surplus production models were fitted to estimates of catch per unit area (CPUA) and fisher density for 258 fisheries in Africa, Asia and South America. In all cases examined, the best or equal best fitting model was the Fox type, explaining up to 90% of the variation in CPUA. For lake and reservoir fisheries in Africa and Asia, the Schaefer and an asymptotic model fitted equally well. The Fox model estimates of fisher density (fishers km−2) at maximum yield (iMY) for floodplain-rivers, African lakes and reservoirs and reef-based fisheries are 13.7 (95% CI [11.8, 16.4]); 27.8 (95% CI [17.5, 66.7]) and 643 (95% CI [459,1075]), respectively and compare well with earlier estimates. Corresponding estimates of maximum yield are also given. The significantly higher value of iMY for reef-based fisheries compared to estimates for rivers and lakes reflects the use of a different measure of fisher density based upon human population size estimates. The models predict that maximum yield is achieved at a higher fishing intensity in Asian lakes compared to those in Africa. This may reflect the common practice in Asia of stocking lakes to augment natural recruitment. Because of the equilibrium assumptions underlying the models, all the estimates of maximum yield and corresponding levels of effort should be treated with caution.
Resumo:
The Bahrain International Circuit (BIC) and complex, at latitude 26.00N and longitude 51.54E, was built in 483 days and cost 150 million US$. The circuit consists of six different individual tracks with a 3.66 km outer track (involving 10 turns) and a 2.55 km inner track (having six turns). The complex has been designed to host a variety of other sporting activities. Fifty thousand spectators, including 10,500 in the main grandstand, can be accommodated simultaneously. State-of-the art on-site media and broadcast facilities are available. The noise level emitted from vehicles on the circuit during the Formula-1 event, on April 4th 2004, was acceptable and caused no physical disturbance to the fans in the VIP lounges or to scholars studying at the University of Bahrain's Shakeir Campus, which is only 1.5 km away from the circuit. The sound-intensity level (SIL) recorded on the balcony of the VIP lounge was 128 dB(A) and was 80 dB(A) inside the lounge. The calculated SIL immediately outside the lecture halls of the University of Bahrain was 70 dB(A) and 65 dB(A) within them. Thus racing at BIC can proceed without significantly disturbing the academic-learning process. The purchased electricity demand by the BIC complex peaked (at 4.5 MW) during the first Formula-1 event on April 4th 2004. The reverse-osmosis (RO) plant at the BIC provides 1000 m(3) of desalinated water per day for landscape irrigation. Renewable-energy inputs, (i.e., via solar and wind power), at the BIC could be harnessed to generate electricity for water desalination, air conditioning, lighting as well as for irrigation. If the covering of the BIC complex was covered by adhesively fixed modern photovoltaic cells, then similar to 1.2 MW of solar electricity could be generated. If two horizontal-axis, at 150 m height above the ground, three 75m bladed, wind turbines were to be installed at the BIC, then the output could reach 4 MW. Furthermore, if 10,000 Jojoba trees (a species renowned for having a low demand for water, needing only five irrigations per year in Bahrain and which remain green throughout the year) are planted near the circuit, then the local micro-climate would be improved with respect to human comfort as well as the local environment becoming cleaner.
Resumo:
As the learning paradigm shifts to a more personalised learning process, users need dynamic feedback from their knowledge path. Learning Management Systems (LMS) offer customised feedback dependent on questions and the answers given. However these LMSs are not designed to generate personalised feedback for an individual learner, tutor and instructional designer. This paper presents an approach for generating constructive feedback for all stakeholders during a personalised learning process. The dynamic personalised feedback model generates feedback based on the learning objectives for the Learning Object. Feedback can be generated at Learning Object level and the Information Object level for both the individual learner and the group. The group feedback is meant for the tutors and instructional designer to improve the learning process.
Resumo:
One of the most pervading concepts underlying computational models of information processing in the brain is linear input integration of rate coded uni-variate information by neurons. After a suitable learning process this results in neuronal structures that statically represent knowledge as a vector of real valued synaptic weights. Although this general framework has contributed to the many successes of connectionism, in this paper we argue that for all but the most basic of cognitive processes, a more complex, multi-variate dynamic neural coding mechanism is required - knowledge should not be spacially bound to a particular neuron or group of neurons. We conclude the paper with discussion of a simple experiment that illustrates dynamic knowledge representation in a spiking neuron connectionist system.
Resumo:
This chapter looks at books which will support the very young through their earliest childhood and first few years of schooling. Learning to read can be hard but it is a lot harder if you never encounter the sort of literature that will engage you and motivate you to see the whole learning process as worthwhile. The chapter considers ways to share great texts with young children and how to select good books to share.
Resumo:
Spontaneous activity of the brain at rest frequently has been considered a mere backdrop to the salient activity evoked by external stimuli or tasks. However, the resting state of the brain consumes most of its energy budget, which suggests a far more important role. An intriguing hint comes from experimental observations of spontaneous activity patterns, which closely resemble those evoked by visual stimulation with oriented gratings, except that cortex appeared to cycle between different orientation maps. Moreover, patterns similar to those evoked by the behaviorally most relevant horizontal and vertical orientations occurred more often than those corresponding to oblique angles. We hypothesize that this kind of spontaneous activity develops at least to some degree autonomously, providing a dynamical reservoir of cortical states, which are then associated with visual stimuli through learning. To test this hypothesis, we use a biologically inspired neural mass model to simulate a patch of cat visual cortex. Spontaneous transitions between orientation states were induced by modest modifications of the neural connectivity, establishing a stable heteroclinic channel. Significantly, the experimentally observed greater frequency of states representing the behaviorally important horizontal and vertical orientations emerged spontaneously from these simulations. We then applied bar-shaped inputs to the model cortex and used Hebbian learning rules to modify the corresponding synaptic strengths. After unsupervised learning, different bar inputs reliably and exclusively evoked their associated orientation state; whereas in the absence of input, the model cortex resumed its spontaneous cycling. We conclude that the experimentally observed similarities between spontaneous and evoked activity in visual cortex can be explained as the outcome of a learning process that associates external stimuli with a preexisting reservoir of autonomous neural activity states. Our findings hence demonstrate how cortical connectivity can link the maintenance of spontaneous activity in the brain mechanistically to its core cognitive functions.
Resumo:
The paper develops a more precise specification and understanding of the process of national-level knowledge accumulation and absorptive capabilities by applying the reasoning and evidence from the firm-level analysis pioneered by Cohen and Levinthal (1989, 1990). In doing so, we acknowledge that significant cross-border effects due to the role of both inward and outward FDI exist and that assimilation of foreign knowledge is not only confined to catching-up economies but is also carried out by countries at the frontier-sharing phase. We postulate a non-linear relationship between national absorptive capacity and the technological gap, due to the effects of the cumulative nature of the learning process and the increase in complexity of external knowledge as the country approaches the technological frontier. We argue that national absorptive capacity and the accumulation of knowledge stock are simultaneously determined. This implies that different phases of technological development require different strategies. During the catching-up phase, knowledge accumulation occurs predominately through the absorption of trade and/or inward FDI-related R&D spillovers. At the pre-frontier-sharing phase onwards, increases in the knowledge base occur largely through independent knowledge creation and actively accessing foreign-located technological spillovers, inter alia through outward FDI-related R&D, joint ventures and strategic alliances.
Resumo:
This paper studies the economic behavior of agents, who make decisions regarding the sustainability of Common-Pool Resources (CPR). For this purpose, economic experiments are applied to simulate the yield of a CPR, taking into account the influence of economics training on the learning process of individuals, regarding their decisions for sustainability. Based on a non-cooperative game with simultaneous choices, the results of experiments show that after several rounds the existence of economics knowledge reflects a better learning process for making decisions regarding sustainability of CPR.