23 resultados para leaf margin analysis
em CentAUR: Central Archive University of Reading - UK
Resumo:
We have compiled two comprehensive gene expression profiles from mature leaf and immature seed tissue of rice (Oryza sativa ssp. japonica cultivar Nipponbare) using Serial Analysis of Gene Expression (SAGE) technology. Analysis revealed a total of 50 519 SAGE tags, corresponding to 15 131 unique transcripts. Of these, the large majority (approximately 70%) occur only once in both libraries. Unexpectedly, the most abundant transcript (approximately 3% of the total) in the leaf library was derived from a type 3 metallothionein gene. The overall frequency profiles of the abundant tag species from both tissues differ greatly and reveal seed tissue as exhibiting a non-typical pattern of gene expression characterized by an over abundance of a small number of transcripts coding for storage proteins. A high proportion ( approximately 80%) of the abundant tags (> or = 9) matched entries in our reference rice EST database, with many fewer matches for low abundant tags. Singleton transcripts that are common to both tissues were collated to generate a summary of low abundant transcripts that are expressed constitutively in rice tissues. Finally and most surprisingly, a significant number of tags were found to code for antisense transcripts, a finding that suggests a novel mechanism of gene regulation, and may have implications for the use of antisense constructs in transgenic technology.
Resumo:
Objectives: Does artichoke leaf extract (ALE) ameliorate symptoms of Irritable bowel syndrome (IBS) in otherwise healthy volunteers suffering concomitant dyspepsia? Methods: A subset analysis of a previous dose-ranging, open, postal study, in adults suffering dyspepsia. Two hundred and eight (208) adults were identified post hoc as suffering with IBS. IBS incidence, self-reported usual bowel pattern, and the Nepean Dyspepsia Index (NDI) were compared before and after a 2-month intervention period. Results: There was a significant fall in IBS incidence of 26.4% (p<0.001) after treatment. A significant shift in self-reported usual bowel pattern away from "alternating constipation/diarrhea" toward "normal" (p<0.001) was observed. NDI total symptom score significantly decreased by 41% (p<0.001) after treatment. Similarly, there was a significant 20% improvement in the NDI total quality-of-life (QOL) score in the subset after treatment. Conclusion: This report supports previous findings that ALE ameliorates symptoms of IBS, plus improves health-related QOL.
Resumo:
We provide a unified framework for a range of linear transforms that can be used for the analysis of terahertz spectroscopic data, with particular emphasis on their application to the measurement of leaf water content. The use of linear transforms for filtering, regression, and classification is discussed. For illustration, a classification problem involving leaves at three stages of drought and a prediction problem involving simulated spectra are presented. Issues resulting from scaling the data set are discussed. Using Lagrange multipliers, we arrive at the transform that yields the maximum separation between the spectra and show that this optimal transform is equivalent to computing the Euclidean distance between the samples. The optimal linear transform is compared with the average for all the spectra as well as with the Karhunen–Loève transform to discriminate a wet leaf from a dry leaf. We show that taking several principal components into account is equivalent to defining new axes in which data are to be analyzed. The procedure shows that the coefficients of the Karhunen–Loève transform are well suited to the process of classification of spectra. This is in line with expectations, as these coefficients are built from the statistical properties of the data set analyzed.
Resumo:
Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3-and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4grasses and C3herbs from 41–20ka. A peak in C4abundance during the Last Glacial Maximum (LGM, ∼21ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δD values over the entire record indicate that the majority of variability in leaf wax δD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δD signatures. However, positive δD deviations from the observed δ13C–δD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δD signatures.
Resumo:
This article contains raw and processed data related to research published by Bryant et al. [1]. Data was obtained by MS-based proteomics, analysing trichome-enriched, trichome-depleted and whole leaf samples taken from the medicinal plant Artemisia annua and searching the acquired MS/MS data against a recently published contig database [2] and other genomic and proteomic sequence databases for comparison. The processed data shows that an order-of-magnitude more proteins have been identified from trichome-enriched Artemisia annua samples in comparison to previously published data. Proteins known to have a role in the biosynthesis of artemisinin and other highly abundant proteins were found which imply additional enzymatically driven processes occurring within the trichomes that are significant for the biosynthesis of artemisinin.
Resumo:
1. The growth (increase in height and leaf number) of four grass species was reduced by a -0.5 MPa drought stress, but the performance of an associated herbivore, Rhopalosiphum padi (L.), was not affected consistently. The intrinsic rate of increase of R. padi was reduced by drought stress on three grass species, including Dactylis glomerata (L.), but was unaffected on Arrhenatherum elatius (L.). Therefore, there is no general relationship in the effect of plant drought on an insect herbivore, even among closely related host plant species. 2. Drought stress increased the quality of plant phloem sap, as indicated by increased sieve element osmotic pressure and essential amino acid concentrations. Thus, diet quality could not account for the reduced performance of R. padi under drought stress. The concentration of essential amino acids in the phloem of well-watered A. elatius was, however, lower than that of well-watered D. glomerata, correlating with the decreased performance of aphids on well-watered A. elatius. 3. There were no differences in aphid feeding duration between watering treatments or plant species but sap ingestion rates were reduced significantly under drought stress. 4. Using the measure of dietary amino acid concentrations and the estimate of sap ingestion, the essential amino acid flux through aphids was calculated. Compared with the flux through aphids feeding on well-watered D. glomerata, there was a reduction in aphids feeding on drought-stressed D. glomerata and drought-stressed A. elatius due to lower sap ingestion rates. The flux through aphids on well-watered A. elatius was also reduced due to low phloem essential amino acid concentrations. Thus, the performance of an aphid is correlated with the availability and accessibility of essential amino acids.
Resumo:
This paper summarizes the design, manufacturing, testing, and finite element analysis (FEA) of glass-fibre-reinforced polyester leaf springs for rail freight vehicles. FEA predictions of load-deflection curves under static loading are presented, together with comparisons with test results. Bending stress distribution at typical load conditions is plotted for the springs. The springs have been mounted on a real wagon and drop tests at tare and full load have been carried out on a purpose-built shaker rig. The transient response of the springs from tests and FEA is presented and discussed.
Resumo:
This paper presents the design evolution process of a composite leaf spring for freight rail applications. Three designs of eye-end attachment for composite leaf springs are described. The material used is glass fibre reinforced polyester. Static testing and finite element analysis have been carried out to obtain the characteristics of the spring. Load-deflection curves and strain measurement as a function of load for the three designs tested have been plotted for comparison with FEA predicted values. The main concern associated with the first design is the delamination failure at the interface of the fibres that have passed around the eye and the spring body, even though the design can withstand 150 kN static proof load and one million cycles fatigue load. FEA results confirmed that there is a high interlaminar shear stress concentration in that region. The second design feature is an additional transverse bandage around the region prone to delamination. Delamination was contained but not completely prevented. The third design overcomes the problem by ending the fibres at the end of the eye section.
Resumo:
This paper shows the process of the virtual production development of the mechanical connection between the top leaf of a dual composite leaf spring system to a shackle using finite element methods. The commercial FEA package MSC/MARC has been used for the analysis. In the original design the joint was based on a closed eye-end. Full scale testing results showed that this configuration achieved the vertical proof load of 150 kN and 1 million cycles of fatigue load. However, a problem with delamination occurred at the interface between the fibres going around the eye and the main leaf body. To overcome this problem, a second design was tried using transverse bandages of woven glass fibre reinforced tape to wrap the section that is prone to delaminate. In this case, the maximum interlaminar shear stress was reduced by a certain amount but it was still higher than the material’s shear strength. Based on the fact that, even with delamination, the top leaf spring still sustained the maximum static and fatigue loads required, the third design was proposed with an open eye-end, eliminating altogether the interface where the maximum shear stress occurs. The maximum shear stress predicted by FEA is reduced significantly and a safety factor of around 2 has been obtained. Thus, a successful and safe design has been achieved.
Resumo:
'Maximum Available Feedback' is Bode's term for the highest possible loop gain over a given bandwidth, with specified stability margins, in a single loop feedback system. His work using asymptotic analysis allowed Bode to develop a methodology for achieving this. However, the actual system performance differs from that specified, due to the use of asymptotic approximations, and the author[2] has described how, for instance, the actual phase margin is often much lower than required when the bandwidth is high, and proposed novel modifications to the asymptotes to address the issue. This paper gives some new analysis of such systems, showing that the method also contravenes Bode's definition of phase margin, and shows how the author's modifications can be used for different amounts of bandwidth.
Resumo:
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Resumo:
The present paper presents a meta-analysis of the economic and agronomic performance of genetically modified (GM) crops worldwide. Bayesian, classical and non-parametric approaches were used to evaluate the performance of GM crops v. their conventional counterparts. The two main GM crop traits (herbicide tolerant (HT) and insect resistant (Bt)) and three of the main GM crops produced worldwide (Bt cotton, HT soybean and Bt maize) were analysed in terms of yield, production cost and gross margin. The scope of the analysis covers developing and developed countries, six world regions, and all countries combined. Results from the statistical analyses indicate that GM crops perform better than their conventional counterparts in agronomic and economic (gross margin) terms. Regarding countries’ level of development, GM crops tend to perform better in developing countries than in developed countries, with Bt cotton being the most profitable crop grown.
Resumo:
A range of physiological parameters (canopy light transmission, canopy shape, leaf size, flowering and flushing intensity) were measured from the International Clone Trial, typically over the course of two years. Data were collected from six locations, these being: Brazil, Ecuador, Trinidad, Venezuela, Côte d’Ivoire and Ghana. Canopy shape varied significantly between clones, although it showed little variation between locations. Genotypic variation in leaf size was differentially affected by the growth location; such differences appeared to underlie a genotype by environment interaction in relation to canopy light transmission. Flushing data were recorded at monthly intervals over the course of a year. Within each location, a significant interaction was observed between genotype and time of year, suggesting that some genotypes respond to a greater extent than others to environmental stimuli. A similar interaction was observed for flowering data, where significant correlations were found between flowering intensity and temperature in Brazil and flowering intensity and rainfall in Côte d’Ivoire. The results demonstrate the need for local evaluation of cocoa clones and also suggest that the management practices for particular planting material may need to be fine-tuned to the location in which they are cultivated.
Resumo:
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.
Resumo:
This paper examines the implications of using marketing margins in applied commodity price analysis. The marketing-margin concept has a long and distinguished history, but it has caused considerable controversy. This is particularly the case in the context of analyzing the distribution of research gains in multi-stage production systems. We derive optimal tax schemes for raising revenues to finance research and promotion in a downstream market, derive the rules for efficient allocation of the funds, and compare the rules with an without the marketing-margin assumption. Applying the methodology to quarterly time series on the Australian beef-cattle sector and, with several caveats, we conclude that, during the period 1978:2 - 1988:4, the Australian Meat and Livestock Corporation optimally allocated research resources.