69 resultados para latin hypercube

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In evaluating an interconnection network, it is indispensable to estimate the size of the maximal connected components of the underlying graph when the network begins to lose processors. Hypercube is one of the most popular interconnection networks. This article addresses the maximal connected components of an n -dimensional cube with faulty processors. We first prove that an n -cube with a set F of at most 2n - 3 failing processors has a component of size greater than or equal to2(n) - \F\ - 1. We then prove that an n -cube with a set F of at most 3n - 6 missing processors has a component of size greater than or equal to2(n) - \F\ - 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

evaluating the fault tolerance of an interconnection network, it is essential to estimate the size of a maximal connected component of the network at the presence of faulty processors. Hypercube is one of the most popular interconnection networks. In this paper, we prove that for ngreater than or equal to6, an n-dimensional cube with a set F of at most (4n-10) failing processors has a component of size greater than or equal to2"-\F-3. This result demonstrates the superiority of hypercube in terms of the fault tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypercube is one of the most popular topologies for connecting processors in multicomputer systems. In this paper we address the maximum order of a connected component in a faulty cube. The results established include several known conclusions as special cases. We conclude that the hypercube structure is resilient as it includes a large connected component in the presence of large number of faulty vertices.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a slightly revised version of an article first published in the Cambridge Classical Journal, vol. 51 (2005), pp. 35-71.