10 resultados para lamina propria
em CentAUR: Central Archive University of Reading - UK
Resumo:
Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.
Resumo:
Background: In mammals, early-life environmental variations appear to affect microbial colonization and therefore competent immune development, and exposure to farm environments in infants has been inversely correlated with allergy development. Modelling these effects using manipulation of neonatal rodents is difficult due to their dependency on the mother, but the relatively independent piglet is increasingly identified as a valuable translational model for humans. This study was designed to correlate immune regulation in piglets with early-life environment. Methods: Piglets were nursed by their mother on a commercial farm, while isolatorreared siblings were formula fed. Fluorescence immunohistology was used to quantify T-reg and effector T-cell populations in the intestinal lamina propria and the systemic response to food proteins was quantified by capture ELISA. Results: There was more CD4+ and CD4+CD25+ effector T-cell staining in the intestinal mucosa of the isolator-reared piglets compared with their farm-reared counterparts. In contrast, these isolator-reared piglets had a significantly reduced CD4+CD25+Foxp3+ regulatory T-cell population compared to farm-reared littermates, resulting in a significantly higher T-reg-to-effector ratio in the farm animals. Consistent with these findings, isolator-reared piglets had an increased serum IgG anti-soya response to novel dietary soya protein relative to farm-reared piglets. Conclusion: Here, we provide the first direct evidence, derived from intervention, that components of the early-life environment present on farms profoundly affects both local development of regulatory components of the mucosal immune system and immune responses to food proteins at weaning. We propose that neonatal piglets provide a tractable model which allows maternal and treatment effects to be statistically separated.
Resumo:
Prostaglandins (PG) are bioactive lipids derived from the metabolism of membrane polyunsaturated fatty acids (PUFA), and play important roles in a number of biological processes including cell division, immune responses and wound healing. Cyclooxygenase (COX) is the key enzyme in PG synthesis from arachidonic acid. The hypothesis of the present study was that expression of COX-2 in porcine intestine was dependent on the microbial load and the age of piglets. Piglets were obtained from sows raised either on outdoor free-range farms or on indoor commercial farms, and littermates were divided into three treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56 of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P=0.053). No significant effect of farm, treatments or age of piglets was observed on COX-2 expressing data when analysing all data of images obtained at day 28 and 56. By double-labelling experiments, COX-2 was found not to be expressed on cell co-expressing CD45, CD16, CD163 or CD2, thus indicating that mucosal leukocytes, including dendritic cells, macrophages and NK cells did not express COX-2. Future research should investigate the role of COX-2 expression in the digestive tract in relation to pig health.
Resumo:
Reactive new bone on the endocranial surface of the skull in non-adults has recently received a lot of attention in the palaeopathological literature. These features appear as layers of new bone on the original cortical surface, expanding around meningeal vessels, as isolated plaques, 'hair-on-end' extensions of the diploe or, as 'capillary' impressions extending into the inner lamina of the cranium. These lesions are commonly found on the occipital bone, outlining the cruciate eminence, but have also been recorded on the parietal and frontal bones, and appear to follow the areas of venous drainage. Although recognized as resulting from haemorrhage or inflammation, their precise aetiology is still a matter of controversy. This paper outlines their possible causes and examines their nature and distribution in a group of non-adults from four archaeological sites in England. It is recommended that, when recording these lesions in the future, additional skeletal pathologies, the age of the child, and nature and distribution of the lesions also be taken into account. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Development of a new species of malacosporean myxozoan (Buddenbrockia allmani n. sp.) in the bryozoan Lophopus crystallinus is described. Early stages, represented by isolated cells or small groups, were observed in the host's body wall or body cavity. Multiplication and rearrangement of cells gave an outer cell layer around a central mass. The outer cells made contact by filopodia and established adherens junctions. Sporoplasmosomes were a notable feature of early stages, but these were lost in subsequent development. Typical malacosporean sacs were formed from these groups by attachment of the inner (luminal) cells by a basal lamina to the outer layer (mural cells). Division of luminal cells gave rise to a population of cells that was liberated into the lumen of the sac. Mitotic spindles in open mitosis and prophase stages of meiosis were observed in luminal cells. Centrioles were absent. Detached luminal cells assembled to form spores with four polar capsules and several valve cells surrounding two sporoplasms with secondary cells. Restoration of sporoplasmosomes occurred in primary sporoplasms. A second type of sac was observed with highly irregular mural cells and stellate luminal cells. A radially striated layer and dense granules in the polar capsule wall, and previous data on 18 rDNA sequences enabled assignment of the species to the genus Buddenbrockia, while specific diagnosis relied on the rDNA data and on sac shape and size.
The genus Borassus (Arecaceae) in West Africa, with a description of a new species from Burkina Faso
Resumo:
Borassus akeassii Bayton, Ouedraogo & Guinko sp. nov. (Arecaceae) is described as a new species from western Burkina Faso in West Africa. It has been confused with the widely distributed African species B. aethiopum and more recently with the Asian B. flabellifer. However, it is distinguished by its glaucous, green leaves with weakly armed petioles and a characteristic pattern of lamina venation. The fruits have a pointed apex and are greenish when ripe, and the flowers of the pistillate inflorescence are arranged in three spirals. The pollen has a reticulate tectum and distinctive ornamentation. The distribution of B. akeassii is discussed and the status of the varieties of Borassus aethiopum (var. bagamojensis and var. senegalensis) is examined. (c) 2006 The Linnean Society of London.
Resumo:
Adult skeletal muscle possesses a resident stem cell population called satellite cells which are responsible for tissue repair following damage. Satellite cell migration is crucial in promoting rapid tissue regeneration but is a poorly understood process. Furthermore, the mechanisms facilitating satellite cell movement have yet to be elucidated. Here the process of satellite cell migration has been investigated revealing that they undergo two distinct phases of movement; firstly under the basal lamina and then rapidly increasing their velocity when on the myofibre surface. Most significantly we show that satellite cells move using a highly dynamic blebbing based mechanism and not via lamellopodia mediated propulsion. We show that nitric oxide and non-canonical Wnt signalling pathways are necessary for regulating the formation of blebs and the migration of satellite cells. In summary, we propose that the formation of blebs and their necessity for satellite cell migration has significant implications in the future development of therapeutic regimes aimed at promoting skeletal muscle regeneration.
Resumo:
Leaf expansion in the fast-growing tree,Populus × euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0–3) and late (LPI, 6–8) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2].
Resumo:
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
Resumo:
The composition of the extracellular matrix (ECM) of skeletal muscle fibres is a unique environment that supports the regenerative capacity of satellite cells; the resident stem cell population. The impact of environment has great bearing on key properties permitting satellite cells to carry out tissue repair. In this study, we have investigated the influence of the ECM and glycolytic metabolism on satellite cell emergence and migration- two early processes required for muscle repair. Our results show that both influence the rate at which satellite cells emerge from the sub-basal lamina position and their rate of migration. These studies highlight the necessity of performing analysis of satellite behaviour on their native substrate and will inform on the production of artificial scaffolds intended for medical uses.