19 resultados para lake sediments

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slavic and German colonization of the southern Baltic between the 8th and 15th centuries A.D. is well-documented archaeologically and historically. Despite the large number of pollen profiles from Poland, few palaeoecological studies have examined the ecological impact of a process that was central to the expansion of European, Christian, societies. This study aims to redress this balance through multiproxy analysis of lake sediments from Radzyń Chełminski, Northern Poland, using pollen, element geochemistry (Inductively Coupled-Optical Emission Spectroscopy [ICP-OES]), organic content, and magnetic susceptibility. The close association between lake and medieval settlements presents the ideal opportunity to reconstruct past vegetation and land-use dynamics within a well-documented archaeological, historical, and cultural context. Three broad phases of increasing landscape impact are visible in the pollen and geochemical data dating from the 8th/9th, 10th/11th, and 13th centuries, reflecting successive phases of Slavic and German colonization. This involved the progressive clearance of oak-hornbeam dominated woodland and the development of an increasingly open agricultural landscape. Although the castles and towns of the Teutonic Order remain the most visible signs of medieval colonization, the palynological and geochemical data demonstrate that the major phase of woodland impact occurred during the preceding phase of Slavic expansion; Germans colonists were entering a landscape already significantly altered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. We compared the baseline phosphorus (P) concentrations inferred by diatom-P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2-200 mu g TP L-1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 mu g TP L-1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 mu g TP L-1 in only 4). 3. The difference between baseline and present-day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long-term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre-enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in-lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over-estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although foraminifera have been found living in inland saline lakes isolated from the sea, this phenomenon has rarely been recognized in the fossil record. This study documents the occurrence of benthic foraminifera in Holocene lake sediments located nearly 500 km inland from the Red Sea, in the Al-Mundafan region of southern Saudi Arabia. The lake formed during a regional pluvial period, 10,500–6000 yr BP. The presence of foraminifera and brackish charophytes in the studied section represent an interval when the lake was slightly brackish due to high evaporation. The studied sediments yielded a bispecific benthic foraminiferal fauna comprised of Helenina anderseni and Trichohyalus aguayoi, as well as the brackish charophyte genus Lamprothamnium. The benthic foraminifera are species characteristic of mangrove swamps, salt marshes, and lagoons, which are environments currently widespread along the Red Sea coasts. Because the Al Mundafan area was never connected to the sea during the Quaternary, wading birds must have been the vector that transported the foraminifera to the paleolake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a simple sieving methodology to aid the recovery of large cultigen pollen grains, such as maize (Zea mays L.), manioc (Manihot esculenta Crantz), and sweet potato (Ipomoea batatas L.), among others, for the detection of food production using fossil pollen analysis of lake sediments in the tropical Americas. The new methodology was tested on three large study lakes located next to known and/or excavated pre-Columbian archaeological sites in South and Central America. Five paired samples, one treated by sieving, the other prepared using standard methodology, were compared for each of the three sites. Using the new methodology, chemically digested sediment samples were passed through a 53 µm sieve, and the residue was retained, mounted in silicone oil, and counted for large cultigen pollen grains. The filtrate was mounted and analysed for pollen according to standard palynological procedures. Zea mays (L.) was recovered from the sediments of all three study lakes using the sieving technique, where no cultigen pollen had been previously recorded using the standard methodology. Confidence intervals demonstrate there is no significant difference in pollen assemblages between the sieved versus unsieved samples. Equal numbers of exotic Lycopodium spores added to both the filtrate and residue of the sieved samples allow for direct comparison of cultigen pollen abundance with the standard terrestrial pollen count. Our technique enables the isolation and rapid scanning for maize and other cultigen pollen in lake sediments, which, in conjunction with charcoal and pollen records, is key to determining land-use patterns and the environmental impact of pre-Columbian societies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority of vegetation reconstructions from the Neotropics are derived from fossil pollen records extracted from lake sediments. However, the interpretation of these records is restricted by limited knowledge of the contemporary relationships between the vegetation and pollen rain of Neotropical ecosystems, especially for more open vegetation such as savannas. This research aims to improve the interpretation of these records by investigating the vegetation and modern pollen rain of different savanna ecosystems in Bolivia using vegetation inventories, artificial pollen traps and surface lake sediments. Two types of savanna were studied, upland savannas (cerrado), occurring on well drained soils, and seasonally-inundated savannas occurring on seasonally water-logged soils. Quantitative vegetation data are used to identify taxa that are floristically important in the different savanna types and to allow modern pollen/vegetation ratios to be calculated. Artificial pollen traps from the upland savanna site are dominated by Moraceae (35%), Poaceae (30%), Alchornea (6%) and Cecropia (4%). The two seasonally-inundated savanna sites are dominated by Moraceae (37%), Poaceae (20%), Alchornea (8%) and Cecropia (7%), and Moraceae (25%), Cyperaceae (22%), Poaceae (19%) and Cecropia (9%), respectively. The modern pollen rain of seasonally-inundated savannas from surface lake sediments is dominated by Cyperaceae (35%), Poaceae (33%), Moraceae (9%) and Asteraceae (5%). Upland and seasonally-flooded savannas were found to be only subtly distinct from each other palynologically. All sites have a high proportion of Moraceae pollen due to effective wind dispersal of this pollen type from areas of evergreen forest close to the study sites. Modern pollen/vegetation ratios show that many key woody plant taxa are absent/under-represented in the modern pollen rain (e.g., Caryocar and Tabebuia). The lower-than-expected percentages of Poaceae pollen, and the scarcity of savanna indicators, in the modern pollen rain of these ecosystems mean that savannas could potentially be overlooked in fossil pollen records without consideration of the full pollen spectrum available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fossil pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1–4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5–7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Present climate in the Nafud desert of northern Saudi Arabia is hyper-arid and moisture brought by north-westerly winds scarcely reaches the region. The existence of abundant palaeolake sediments provides evidence for a considerably wetter climate in the past. However, the existing chronological framework of these deposits is solely based on radiocarbon dating of questionable reliability, due to potential post-depositional contamination with younger 14C. By using luminescence dating, we show that the lake deposits were not formed between 40 and 20 ka as suggested previously, but approximately ca 410 ka, 320 ka, 200 ka, 125 ka, and 100 ka ago. All of these humid phases are in good agreement with those recorded in lake sediments and speleothems from southern Arabia. Surprisingly, no Holocene lake deposits were identified. Geological characteristics of the deposits and diatom analysis suggest that a single, perennial lake covered the entire south-western Nafud ca 320 ka ago. In contrast, lakes of the 200 ka, 125 ka, and 100 ka humid intervals were smaller and restricted to interdune depressions of a pre-existing dune relief. The concurrent occurrence of humid phases in the Nafud, southern Arabia and the eastern Mediterranean suggests that moisture in northern Arabia originated either from the Mediterranean due to more frequent frontal depression systems or from stronger Indian monsoon circulation, respectively. However, based on previously published climate model simulations and palaecolimate evidence from central Arabia and the Negev desert, we argue that humid climate conditions in the Nafud were probably caused by a stronger African monsoon and a distinct change in zonal atmospheric circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper maps the carbonate geochemistry of the Makgadikgadi Pans region of northern Botswana from moderate resolution (500 m pixels) remotely sensed data, to assess the impact of various geomorphological processes on surficial carbonate distribution. Previous palaeo-environmental studies have demonstrated that the pans have experienced several highstands during the Quaternary, forming calcretes around shoreline embayments. The pans are also a significant regional source of dust, and some workers have suggested that surficial carbonate distributions may be controlled, in part, by wind regime. Field studies of carbonate deposits in the region have also highlighted the importance of fluvial and groundwater processes in calcrete formation. However, due to the large area involved and problems of accessibility, the carbonate distribution across the entire Makgadikgadi basin remains poorly understood. The MODIS instrument permits mapping of carbonate distribution over large areas; comparison with estimates from Landsat Thematic Mapper data show reasonable agreement, and there is good agreement with estimates from laboratory analysis of field samples. The results suggest that palaeo-lake highstands, reconstructed here using the SRTM 3 arc-second digital elevation model, have left behind surficial carbonate deposits, which can be mapped by the MODIS instrument. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fazzan Basin of south-west Libya is at present arid with less than 20 mm of rainfall per annum. However, regionally extensive limestones, lacustrine sands and coquina (fossiliferous carbonate rock) deposits show that the Fazzan Basin previously contained a large palaeolake, indicating that the climate in the past was more humid. Optically stimulated luminescence (OSL) dating techniques have been applied to key lacustrine deposits within the basin in an attempt to provide an internally consistent chronology for this humidity record. Results indicate that palaeolake sediments within the Fazzan Basin record a very long history of palacohydrological change, ranging from present day and conditions to humidity capable of sustaining a lake with an approximate area of 76,250 km(2). The existence of humid periods in mid oxygen isotope stage 5 and the early Holocene is confirmed. An older lacustrine event, tentatively correlated to oxygen isotope stage 11, is also recognized. In addition, evidence is presented for at least two humid phases beyond the age range over which the conventional OSL dating technique is applicable. This study demonstrates that OSL dating of palaeolake sediments within the Fazzan Basin offers the potential to provide a detailed record of North African humidity spanning several glacial-interglacial cycles. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lacustrine sediments from southeastern Arabia reveal variations in lake level corresponding to changes in the strength and duration of Indian Ocean Monsoon (IOM) summer rainfall and winter cyclonic rainfall. The late glacial/Holocene transition of the region was characterised by the development of mega-linear dunes. These dunes became stabilised and vegetated during the early Holocene and interdunal lakes formed in response to the incursion of the IOM at approximately 8500 cal yr BP with the development of C3 dominated savanna grasslands. The IOM weakened ca. 6000 cal yr BP with the onset of regional aridity, aeolian sedimentation and dune reactivation and accretion. Despite this reduction in precipitation, the take was maintained by winter dominated rainfall. There was a shift to drier adapted C4 grasslands across the dune field. Lake sediment geochemical analyses record precipitation minima at 8200, 5000 and 4200 cal yr BP that coincide with Bond events in the North Atlantic. A number of these events correspond with changes in cultural periods, suggesting that climate was a key mechanism affecting human occupation and exploitation of this region. (c) 2006 University of Washington. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Kinneret (LK) is a relatively fresh water take situated in the Dead Sea Rift (DSR) Valley. The pore water (PW) in the sediments underlying LK pelagic zone have significantly higher salinity than that of the lake. The concentrations of major ion solutes (Cl, Br, Na, K, Mg) in PW from six 2.4 m to 5.1 m long sediment cores increase linearly with depth, indicating the occurrence of saline, deep seated brines. The upper part of the PW column is affected by the much fresher boundary with LK water and in most cores is characterized by gradually increasing Br/Cl and decreasing Na, Mg, K/Cl molar ratios, which tend to stabilize at about 2.0 m below the sediment surface. The 'stable' molar ratios in the deeper PW vary spatially and are supposed to represent the ratios in the deep underlying brines at each site. When plotted as Na/Cl vs. Br/Cl, the stable ratios of the northern and central part of the lake fall close to a straight line which characterizes many of the brines in the DSR Valley. However, the respective ratios in the southern part of the lake fall markedly off the DSR line. Moreover, Na/Cl and K/Cl molar ratios in the south are significantly higher than in the central and northern parts. delta Cl-37 measured in present LK water is ca. 0.0 parts per thousand. Along the PW column at the lake center, delta Cl-37 is becoming more positive with depth, reaching values of about +0.5 parts per thousand to +0.6 parts per thousand at 3 m depth. Even more positive values (+0.7 parts per thousand to +0.8 parts per thousand) are detected further north, in PW from deeper sediment layers. In contrast, in PW from the southeastern part of the lake, delta Cl-37 is becoming more negative with depth (-1.0 parts per thousand at similar to 2.6 m). It is suggested that these isotopic differences are also indicative of spatial variability in the PW brine sources. O-18 and D values in the PW of all 3 m long cores are similar and resemble the respective levels in LK. The source of H2O in 3 m deep, bed sediments is claimed to be the overlying lake water, and therefore water isotopes do not provide a clue regarding the original water isotopic composition in the underlying brines. PW from the southeast with higher K/Cl and Na/Cl but lower concentrations of these solutes, suggest leaching by meteoric water of sub-surface halite and post-halite salt formations, while the more saline PW from the northern and central parts, that have lower K/Cl and Na/Cl, and higher Br/Cl, are similar to DSR brines and represent underlying residual brines. (C) 2009 Elsevier B.V. All rights reserved.