46 resultados para isotope

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perchlorate-reducing bacteria fractionate chlorine stable isotopes giving a powerful approach to monitor the extent of microbial consumption of perchlorate in contaminated sites undergoing remediation or natural perchlorate containing sites. This study reports the full experimental data and methodology used to re-evaluate the chlorine isotope fractionation of perchlorate reduction in duplicate culture experiments of Azospira suillum strain PS at 37 degrees C (Delta Cl-37(Cr)--ClO4-) previously reported, without a supporting data set by Coleman et al. [Coleman, M.L., Ader, M., Chaudhuri, S., Coates,J.D., 2003. Microbial Isotopic Fractionation of Perchlorate Chlorine. Appl. Environ. Microbiol. 69, 4997-5000] in a reconnaissance study, with the goal of increasing the accuracy and precision of the isotopic fractionation determination. The method fully described here for the first time, allows the determination of a higher precision Delta Cl-37(Cl)--ClO4- value, either from accumulated chloride content and isotopic composition or from the residual perchlorate content and isotopic composition. The result sets agree perfectly, within error, giving average Delta Cl-37(Cl)--ClO4- = -14.94 +/- 0.15%omicron. Complementary use of chloride and perchlorate data allowed the identification and rejection of poor quality data by applying mass and isotopic balance checks. This precise Delta Cl-37(Cl)--ClO4-, value can serve as a reference point for comparison with future in situ or microcosm studies but we also note its similarity to the theoretical equilibrium isotopic fractionation between a hypothetical chlorine species of redox state +6 and perchlorate at 37 degrees C and suggest that the first electron transfer during perchlorate reduction may occur at isotopic equilibrium between art enzyme-bound chlorine and perchlorate. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution describes the optimization of chlorine extraction from silicate samples by pyrohydrolysis prior to the precise determination of Cl stable-isotope compositions (637 Cl) by gas source, dual inlet Isotope Ratio Mass Spectrometry (IRMS) on CH(3)Clg. The complete method was checked on three international reference materials for Cl-content and two laboratory glass standards. Whole procedure blanks are lower than 0. 5 mu mol, corresponding to less than 10 wt.% of most of the sample chloride analysed. In the absence of international chlorine isotope rock, we report here Cl extracted compared to accepted Cl contents and reproducibilities on Cl and delta Cl-37 measurements for the standard rocks. After extraction, the Cl contents of the three international references compared within error with the accepted values (mean yield = 94 +/-10%) with reproducibilities better than 12% (10). The laboratory glass standards - andesite SO100DS92 and phonolite S9(2) - were used specifically to test the effect of chloride amount on the measurements. They gave Cl extraction yields of 100 +/-6% (1 sigma-; n = 15) and 105 +/- 8% (1 sigma-; n = 7), respectively, with delta Cl-37 values of -0.51 0.14%o and -0.39 0.17%o (1g). In summary, for silicate samples with Cl contents between 39 and 9042 ppm, the Pyrohydrolysis/HPLC method leads to overall CI extraction yields of 100 8%, reproducibilities on Cl contents of 7% and on delta Cl-37 measurements of 0.12%o (all 1 sigma). The method was further applied to ten silicate rocks of various mineralogy and chemistry (meteorite, fresh MORB glasses, altered basalts and setpentinized peridotites) chosen for their large range of Cl contents (70-2156 ppm) and their geological significance. delta Cl-37 values range between -2.33 and -0.50%o. These strictly negative values contrast with the large range and mainly positive values previously reported for comparable silicate samples and shown here to be affected by analytical problems. Thus we propose a preliminary, revised terrestrial CI cycle, mainly dominated by negative and zero delta Cl-37 values. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorine stable isotope compositions ( delta Cl-37) of 22 mid- ocean ridge basalts ( MORBs) correlate with Cl content. The high-delta Cl-37, Cl- rich basalts are highly contaminated by Cl- rich materials ( seawater, brines, or altered rocks). The low-delta(37) Cl, Cl- poor basalts approach the composition of uncontaminated, mantle- derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB- source mantle has delta(37) Cl <= -1.6 per mil (%), which is significantly lower than that of surface reservoirs (similar to 0 parts per thousand not equal). This isotopic difference between the surface and deep Earth results from net Cl isotopic fractionation ( associated with removal of Cl from the mantle and its return by subduction over Earth history) and/ or the addition ( to external reservoirs) of a late volatile supply that is Cl-37- enriched.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of the ancient ocean-atmosphere system has focused on oceanic proxies. However, the study of terrestrial proxies is equally necessary to constrain our understanding of ancient climates and linkages between the terrestrial and oceanic carbon reservoirs. We have analyzed carbon-isotope ratios from fossil plant material through the Valanginian and Lower Hauterivian from a shallow-marine, ammonite-constrained succession in the Crimean Peninsula of the southern Ukraine in order to determine if the Upper Valanginian positive carbon-isotope excursion is expressed in the atmosphere. delta(13)C(plant) values fluctuate around -23% to -22% for the Valanginian-Hauterivian, except during the Upper Valanginian where delta(13)C(plant) values record a positive excursion to similar to-18%. Based upon ammonite biostratigraphy from Crimea, and in conjunction with a composite Tethyan marine delta(13)C(carb) curve, several conclusions can be drawn: (1) the delta(13)C(plant) record indicates that the atmospheric carbon reservoir was affected; (2) the defined ammonite correlations between Europe and Crimea are synchronous; and (3) a change in photosynthetic carbon-isotope fractionation, caused by a decrease in atmospheric PCO2, occurred during the Upper Valanginian Positive delta(13)C excursion. Our new data, combined with other paleoenvironmental and paleoclimatic information, indicate that the Upper Valanginian was a cool period (icehouse) and highlights that the Cretaceous period was interrupted by periods of cooling and was not an equable climate as previously thought. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rio Tinto river in SW Spain is a classic example of acid mine drainage and the focus of an increasing amount of research including environmental geochemistry, extremophile microbiology and Mars-analogue studies. Its 5000-year mining legacy has resulted in a wide range of point inputs including spoil heaps and tunnels draining underground workings. The variety of inputs and importance of the river as a research site make it an ideal location for investigating sulphide oxidation mechanisms at the field scale. Mass balance calculations showed that pyrite oxidation accounts for over 93% of the dissolved sulphate derived from sulphide oxidation in the Rio Tinto point inputs. Oxygen isotopes in water and sulphate were analysed from a variety of drainage sources and displayed delta O-18((SO4-H2O)) values from 3.9 to 13.6 parts per thousand, indicating that different oxidation pathways occurred at different sites within the catchment. The most commonly used approach to interpreting field oxygen isotope data applies water and oxygen fractionation factors derived from laboratory experiments. We demonstrate that this approach cannot explain high delta O-18((SO4-H2O)) values in a manner that is consistent with recent models of pyrite and sulphoxyanion oxidation. In the Rio Tinto, high delta O-18((SO4-H2O)) values (11.2-13.6 parts per thousand) occur in concentrated (Fe = 172-829 mM), low pH (0.88-1.4), ferrous iron (68-91% of total Fe) waters and are most simply explained by a mechanism involving a dissolved sulphite intermediate, sulphite-water oxygen equilibrium exchange and finally sulphite oxidation to sulphate with O-2. In contrast, drainage from large waste blocks of acid volcanic tuff with pyritiferous veins also had low pH (1.7). but had a low delta O-18((SO4-H2O)) value of 4.0 parts per thousand and high concentrations of ferric iron (Fe(III) = 185 mM, total Fe = 186 mM), suggesting a pathway where ferric iron is the primary oxidant, water is the primary source of oxygen in the sulphate and where sulphate is released directly from the pyrite surface. However, problems remain with the sulphite-water oxygen exchange model and recommendations are therefore made for future experiments to refine our understanding of oxygen isotopes in pyrite oxidation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here the results of a large-scale diachronic palaeodietary (carbon and nitrogen isotopic measurements of bone collagen) study of humans and animals from a single site, the city of York (U.K.) dating from the Roman period to the early 19th century The human sample comprises 313 burials from the cemeteries of Trentholme Drive and Blossom Street (Roman), Belle Vue House (Anglo-Saxon), Fishergate (High and Later Medieval), and All Saints, Pavement (Later and Post-Medieval). In addition, 145 samples of mammal, fish and bird bone from the sites of Tanner Row and Fishergate were analyzed. The isotope data suggest dietary variation between all archaeological periods, although the most significant change was the introduction of significant quantities of marine foods in the Medieval periods. These are first evident in the diet of a small group of individuals from the High Medieval cemetery at Fishergate, although they were consumed almost universally in the following periods. The human isotope values are also remarkable due to unusually elevated delta N-15 ratios that are not sufficiently explained by the comparably small enrichment in C-13 that accompanies them. We discuss the possible reasons behind this and the archaeological significance of the data set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Holocene vegetation history of the Arabian Peninsula is poorly understood, with few palaeobotanical studies to date. At Awafi, Ras al-Khaimah, UAE, a 3.3 m lake sediment sequence records the vegetation development for the period 8500 cal. yr BP to similar to3000 cal. yr BP. delta(13)C isotope, pollen and phytolith analyses indicate that C3 Pooid grassland with a strong woody element existed during the early Holocene (between 8500 and 6000 cal. yr BP) and became replaced by mixed C3 and C4 grasses with a strong C4 Panicoid tall grass element between 5900 and 5400 cal. yr BP. An intense, arid event Occurred at 4100 cal. yr BP when the lake desiccated and was infilled by Aeolian sand. From 4100 cal. yr BP the vegetation was dominated by C4 Chloridoid types and Cyperaceae, suggesting an incomplete vegetation cover and Aeolian dune reactivation owing to increased regional aridity. These data outline the ecosystem dynamics and carbon cycling in response to palaeomon-soon and north-westerly variability during the Holocene. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotopic characterization of chlorine in chlorinated aliphatic pollution is potentially very valuable for risk assessment and monitoring remediation or natural attenuation. The approach has been underused because of the complexity of analysis and the time it takes. We have developed a new method that eliminates sample preparation. Gas chromatography produces individually eluted sample peaks for analysis. The He carrier gas is mixed with Ar and introduced directly into the torch of a multicollector ICPMS. The MC-ICPMS is run at a high mass resolution of >= 10 000 to eliminate interference of mass 37 ArH with Cl. The standardization approach is similar to that for continuous flow stable isotope analysis in which sample and reference materials are measured successively. We have measured PCE relative to a laboratory TCE standard mixed with the sample. Solvent samples of 200 nmol to 1.3 mu mol ( 24- 165 mu g of Cl) were measured. The PCE gave the same value relative to the TCE as measured by the conventional method with a precision of 0.12% ( 2 x standard error) but poorer precision for the smaller samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of dideutero-silylene, SiD2, generated by laser flash photolysis of phenylsilane-d(3), have been carried out to obtain rate constants for its bimolecular reaction with C2H2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equation log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.05 +/- 0.05) + (3.43 +/- 0.36 kJ mol(-1))/RT ln 10. The rate constants were used to obtain a comprehensive set of isotope effects by comparison with earlier obtained rate constants for the reactions of SiH2 with C2H2 and C2D2. Additionally, pressure-dependent rate constants for the reaction of SiH2 with C2H2 in the presence of He (1-100 Tort) were obtained at 300, 399, and 613 K. Quantum chemical (ab initio) calculations of the SiC2H4 reaction system at the G3 level support the initial formation of silirene, which rapidly isomerizes to ethynylsilane as the major pathway. Reversible formation of vinylsilylene is also an important process. The calculations also indicate the involvement of several other intermediates, not previously suggested in the mechanism. RRKM calculations are in semiquantitative agreement with the pressure dependences and isotope effects suggested by the ab initio calculations, but residual discrepancies suggest the possible involvement of the minor reaction channel, SiH2 + C2H2 - SWPO + C2H4. The results are compared and contrasted with previous studies of this reaction system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 296 and at 339 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied over the pressure range 10-200 Torr with SF6 as bath gas. The second-order rate constants obtained were pressure dependent, indicating that the reaction is a third-body assisted association process. Rate constants at 339 K were about half those at 296 K. Isotope effects, k(H)/k(D), were small averaging 1.076 0.080, suggesting no involvement of H- (or D-) atom transfer in the rate determining step. RRKM modeling was undertaken based on a transition state appropriate to formation of the expected zwitterionic donoracceptor complex, H2Si...OH2. Because the reaction is close to the low pressure (third order) region, it is difficult to be definitive about the activated complex structure. Various structures were tried, both with and without the incorporation of rotational modes, leading to values for the high-pressure limiting (i.e., true secondorder) rate constant in the range 9.5 x 10(-11) to 5 x 10(-10) cm(3) molecule' s(-1). The RRKM modeling and mechanistic interpretation is supported by ab initio quantum calculations carried out at the G2 and G3 levels. The results are compared and contrasted with the previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroponic isotope labelling of entire plants (HILEP) is a cost-effective method enabling metabolic labelling of whole and mature plants with a stable isotope such as N-15. By utilising hydroponic media that contain N-15 inorganic salts as the sole nitrogen source, near to 100% N-15-labelling of proteins can be achieved. In this study, it is shown that HILEP, in combination with mass spectrometry, is suitable for relative protein quantitation of seven week-old Arabidopsis plants submitted to oxidative stress. Protein extracts from pooled N-14- and N-15-hydroponically grown plants were fractionated by SDS-PAGE, digested and analysed by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). Proteins were identified and the spectra of N-14/N-15 peptide pairs were extracted using their m/z chromatographic retention time, isotopic distributions, and the m/z difference between the N-14 and N-15 peptides. Relative amounts were calculated as the ratio of the sum of the peak areas of the two distinct N-14 and N-15 peptide isotope envelopes. Using Mascot and the open source trans-proteomic pipeline (TPP), the data processing was automated for global proteome quantitation down to the isoform level by extracting isoform specific peptides. With this combination of metabolic labelling and mass spectrometry it was possible to show differential protein expression in the apoplast of plants submitted to oxidative stress. Moreover, it was possible to discriminate between differentially expressed isoforms belonging to the same protein family, such as isoforms of xylanases and pathogen-related glucanases (PR 2). (C) 2008 Elsevier Ltd. All rights reserved.