7 resultados para ionic liq reconstituted cellulose composite solid support matrix transparency

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionization (MALDI) is a key ionization technique in mass spectrometry (MS) for the analysis of labile macromolecules. An important area of study and improvements in relation to MALDI and its application in high-sensitivity MS is that of matrix design and sample preparation. Recently, 4-chloro-alpha-cyanocinnamic acid (ClCCA) has been introduced as a new rationally designed matrix and reported to provide an improved analytical performance as demonstrated by an increase in sequence coverage of protein digests obtained by peptide mass mapping (PMM) (Jaskolla, T. W.; et al. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12200-12205). This new matrix shows the potential to be a superior alternative to the commonly used and highly successful alpha-cyano-4-hydroxycinnamic acid (CHCA). We have taken this design one step further by developing and optimizing an ionic liquid matrix (ILM) and liquid support matrix (LSM) using ClCCA as the principle chromophore and MALDI matrix compound. These new liquid matrices possess greater sample homogeneity and a simpler morphology. The data obtained from our studies show improved sequence coverage for BSA digests compared to the traditional CHCA crystalline matrix and for the ClCCA-containing ILM a similar performance to the ClCCA crystalline matrix down to 1 fmol of BSA digest prepared in a single MALDI sample droplet with current sensitivity levels in the attomole range. The LSMs show a high tolerance to contamination such as ammonium bicarbonate, a commonly used buffering agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-scale framework for decision support is presented that uses a combination of experiments, models, communication, education and decision support tools to arrive at a realistic strategy to minimise diffuse pollution. Effective partnerships between researchers and stakeholders play a key part in successful implementation of this strategy. The Decision Support Matrix (DSM) is introduced as a set of visualisations that can be used at all scales, both to inform decision making and as a communication tool in stakeholder workshops. A demonstration farm is presented and one of its fields is taken as a case study. Hydrological and nutrient flow path models are used for event based simulation (TOPCAT), catchment scale modelling (INCA) and field scale flow visualisation (TopManage). One of the DSMs; The Phosphorus Export Risk Matrix (PERM) is discussed in detail. The PERM was developed iteratively as a point of discussion in stakeholder workshops, as a decision support and education tool. The resulting interactive PERM contains a set of questions and proposed remediation measures that reflect both expert and local knowledge. Education and visualisation tools such as GIS, risk indicators, TopManage and the PERM are found to be invaluable in communicating improved farming practice to stakeholders. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Although liquid matrix-assisted laser desorption/ionization (MALDI) has been used in mass spectrometry (MS) since the early introduction of MALDI, its substantial lack of sensitivity compared to solid (crystalline) MALDI was for a long time a major hurdle to its analytical competitiveness. In the last decade, this situation has changed with the development of new sensitive liquid matrices, which are often based on a binary matrix acid/base system. Some of these matrices were inspired by the recent progress in ionic liquid research, while others were developed from revisiting previous liquid MALDI work as well as from a combination of these two approaches. As a result, two high-performing liquid matrix classes have been developed, the ionic liquid matrices (ILMs) and the liquid support matrices (LSMs), now allowing MS measurements at a sensitivity level that is very close to the level of solid MALDI and in some cases even surpasses it. This chapter provides some basic information on a selection of highly successful representatives of these new liquid matrices and describes in detail how they are made and applied in MALDI MS analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A combined mathematical model for predicting heat penetration and microbial inactivation in a solid body heated by conduction was tested experimentally by inoculating agar cylinders with Salmonella typhimurium or Enterococcus faecium and heating in a water bath. Regions of growth where bacteria had survived after heating were measured by image analysis and compared with model predictions. Visualisation of the regions of growth was improved by incorporating chromogenic metabolic indicators into the agar. Preliminary tests established that the model performed satisfactorily with both test organisms and with cylinders of different diameter. The model was then used in simulation studies in which the parameters D, z, inoculum size, cylinder diameter and heating temperature were systematically varied. These simulations showed that the biological variables D, z and inoculum size had a relatively small effect on the time needed to eliminate bacteria at the cylinder axis in comparison with the physical variables heating temperature and cylinder diameter, which had a much greater relative effect. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bifidobacterial β-galactosidase BbgIV was immobilised on DEAE-Cellulose and Q-Sepharose via ionic binding and on amino-ethyl- and glyoxal-agarose via covalent attachment, and was then used to catalyse the synthesis of galactooligosaccharides (GOS). The immobilisation yield exceeded 90 % using ionic binding, while it was low using aminoethyl agarose (25 – 28 %) and very low using glyoxal agarose (< 3 %). This was due to the mild conditions and absence of chemical reagents in ionic binding, compared to covalent attachment. The maximum GOS yield obtained using DEAE-Cellulose and Q-Sepharose was similar to that obtained using free BbgIV (49 – 53 %), indicating the absence of diffusion limitation and mass transfer issues. For amino-ethyl agarose, however, the GOS yield obtained was lower (42 – 44 %) compared to that obtained using free BbgIV. All the supports tried significantly (P < 0.05) increased the BbgIV operational stability and the GOS synthesis productivity up to 55 °C. Besides, six successive GOS synthesis batches were performed using BbgIV immobilised on Q-Sepharose; all resulted in similar GOS yields, indicating the possibility of developing a robust synthesis process. Overall, the GOS synthesis operation performance using BbgIV was improved by immobilising the enzyme onto solid supports, in particular on Q-Sepharose