48 resultados para inverted classroom ICM

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this research is to determine whether new intelligent classrooms will affect the behaviour of children in their new learning environments. Design/methodology/approach – A multi-method study approach was used to carry out the research. Behavioural mapping was used to observe and monitor the classroom environment and analyse usage. Two new classrooms designed by INTEGER (Intelligent and Green) in two different UK schools provided the case studies to determine whether intelligent buildings (learning environments) can enhance learning experiences. Findings – Several factors were observed in the learning environments: mobility, flexibility, use of technology, interactions. Relationships among them were found indicating that the new environments have positive impact on pupils' behaviour. Practical implications – A very useful feedback for the Classrooms of the Future initiative will be provided, which can be used as basis for the School of the Future initiative. Originality/value – The behavioural analysis method described in this study will enable an evaluation of the “Schools of the Future” concept, under children's perspective. Using a real life laboratory gives contribution to the education field by rethinking the classroom environment and the way of teaching.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops fuzzy methods for control of the rotary inverted pendulum, an underactuated mechanical system. Two control laws are presented, one for swing up and another for the stabilization. The pendulum is swung up from the vertical down stable position to the upward unstable position in a controlled trajectory. The rules for the swing up are heuristically written such that each swing results in greater energy build up. The stabilization is achieved by mapping a stabilizing LQR control law to two fuzzy inference engines, which reduces the computational load compared with using a single fuzzy inference engine. The robustness of the balancing control is tested by attaching a bottle of water at the tip of the pendulum.